

LIFE-REMY project: source apportionment results of the diagnostic analysis in regional modelling

Elena De Angelis (RSE) Guido Pirovano (RSE) Federica Ippolito (CSIC-IDAEA) Fulvio Amato (CSIC-IDAEA) Eleonora Cuccia (ARPA Lombardia) Cristina Colombi (ARPA Lombardia) Guido Lanzani (ARPA Lombardia)

REMY project

REMY: Reducing Emission Modelling uncertaintY

The final goal of the project is to provide recommendations and guidelines for the compilation of emission inventory with the specific aim to improve air quality model performances for assessment, source apportionment and planning.

LIFE-REMY project: source apportionment results of the diagnostic analysis in regional modelling. Po Valley case study

1. Comparing source oriented (CAMx-PSAT) and receptor oriented

(PMF) source apportionment methods

- 2. CAMx PSAT results of COVID19 lockdown scenario effects of road transport emission reduction on source apportionemnt analysis
- 3. SA for the assessment of an air quality modelling simulation

Comparing source oriented (CAMx-PSAT) and receptor oriented (PMF) source apportionment methods

BASE CASE 2017

BC2017: CAMx - PSAT emission

	Group				
Road transport	TRA_EX_HDV	Exhausted emission HDV			
	TRA_D_LDV	Exhausted emission LDV and passenger cars (DIESEL)			
	TRA_OTH_LDV	Exhausted emission LDV and passenger cars (other fuels)			
	TRA_NOEX	Non exhausted emissions (including evaporative)			
Residential heating	RES_BIOM	Residential heating biomass burning			
	PIZZA	Commercial biomass burning (pizzerie)			
	RES_MET	Residential heating natural gas			
	RES_OTHER	Other residential heating (diesel fuel, lpg, other)			
ulture	AGR_COMB	Open burning of agricultural waste			
3					
Agricu	AGR_OTHER	Other emissions in agriculture			
Agricu	AGR_OTHER	Other emissions in agriculture Processes in iron and steel industries			
Istry Agricu	AGR_OTHER IND1 IND2	Other emissions in agriculture Processes in iron and steel industries Processes in non-ferrous metal industries			
Industry Agricu	AGR_OTHER IND1 IND2 IND_CEM	Other emissions in agriculture Processes in iron and steel industries Processes in non-ferrous metal industries Extraction of minerals and quarrying			
Industry Agricu	AGR_OTHER IND1 IND2 IND_CEM IND_OTHER	Other emissions in agricultureProcesses in iron and steel industriesProcesses in non-ferrous metal industriesExtraction of minerals and quarryingOther industry			
Industry Agricu	AGR_OTHER IND1 IND2 IND_CEM IND_OTHER WASTE	Other emissions in agricultureProcesses in iron and steel industriesProcesses in non-ferrous metal industriesExtraction of minerals and quarryingOther industryWaste inciniration and waste open burning			
ner Industry Agricu	AGR_OTHER IND1 IND2 IND_CEM IND_OTHER WASTE ELETTR	Other emissions in agricultureProcesses in iron and steel industriesProcesses in non-ferrous metal industriesExtraction of minerals and quarryingOther industryWaste inciniration and waste open burningCombustion in energy and transformation industries			
Other Industry Agricu	AGR_OTHER IND1 IND2 IND_CEM IND_OTHER WASTE ELETTR BIOG	Other emissions in agricultureProcesses in iron and steel industriesProcesses in non-ferrous metal industriesExtraction of minerals and quarryingOther industryWaste inciniration and waste open burningCombustion in energy and transformation industriesBiogenic emissions			

Model quality assessment

PPM=FPRM+CPRM+primary OA+EC

COMPARISON CAMX-PSAT AND PMF

PMF categories

	Road Traffic	Mineral	Anthropogenic	Biomass Burning	Aged Sea Salt / Road Salt	Secondary Nitrate	Secondary Sulphate and Organics
ELETTR						NO3,NH4	SO4,NH4
IND_OTHER							
IND1			PPM			NO3,NH4	SO4,NH4
IND2							
OTHER						NO3,NH4	SO4,NH4
WASTE							
AGR_COMB			DDM			NO3,NH4	SO4,NH4
PIZZA				PPM			
RES_BIOM							
RES_MET							
RES_OTHER						NO3,NH4	304,INH4
TRA_D_LDV	PPM, SOA						
TRA_EX_HDV							
TRA_NOEX						1003,1114	SO4,NH4
TRA_OTH_LDV							
NATURAL					PPM	NO3,NH4	SO4,NH4,SOA
IND_CEM		PPM					
AGR_OTHER		PPM,NO3					
BOUNDARY		Fine and coarse crustal and «other» PM				NO3,NH4	304,INT4

Comparison between receptor oriented and source oriented models results - MILANO PASCAL 2017

PMF

CAMx-PSAT

Biomass burning

Name	CONC [µg/m³]	PERC	
PMF	3.1	8%	
CAMX-PSAT	4.1	10%	

CAMx/PSAT emission categories:

- residential heating biomass burning (RES_BIOM);
- commercial biomass burning (PIZZA);
- open burning of agricultural waste and stubble/straws on field burning (AGR_COMB);
- waste incineration and waste open burning (WASTE).

Differences between PMF and CAMX-PSAT results can be attributed to:

- i. Peaks not well captured, maybe due to meteorology
- ii. Emission temporal modulation (i.e. meteorology dependent temporal profiles)
- iii. Thermal instability of levoglucosan is probably responsible for the null contributions from PMF in summer

Road transport

Name	CONC [µg/m³]	PERC	
PMF	7.8	19%	
CAMX-PSAT	4.8	9%	

CAMx/PSAT emission categories:

- Diesel Light Duty Vehicles (TRA_D_LVD);
- Heavy Duty Vehicles (TRA_EX_HVD);
- Non-exhaust emissions (all vehicles) (TRA_NOEX);
- Other LDV (Gasoline, GPL and natural gas) including anthropogenic Secondary Organic Aerosols (SOA) (TRA_OTHERS_LVD);

Differences between PMF and CAMX-PSAT results can be attributed to:

- i. emission factors underestimation used in the emission inventory;
- ii. the lack of emissions due to resuspension of road dust in the emission inventory;
- iii. uncertainty in the formation process of SOA;
- iv. uncertainty in the Planetary Boundary Layer (PBL) height estimate.

CAMx PSAT results of COVID19 lockdown scenario

BAU-LOCK 2020

PSAT results BAU vs LOCK 2020 - PM2.5

PSAT results 15/02/2020 - 30/04/2020

PSAT categories:

- Road transport (15%-80%)
- Residential heating
- Other (including solvent use, agriculture, industry...)
- Natural

PM2.5 PSAT Mantova (rural background States)

■ ALLBC ■ OTHER ■ TRA ■ RES ■ NATURAL

SA for the assessment of an air quality modelling simulation

BAU-LOCK 2020

NH4

Ispra (JRC)

www.LifeREMY.eu

dates

Apr

May

Mar

Ispra (JRC) – BAU2020

