

Welcome and Introduction – WG7

S. López-Aparicio^{1,} M. Guevara²

¹ NILU – The Climate and Environmental Research Institute
² Barcelona Supercomputing Center

Background - WG7

Best – practise through QA/QC

Identifying best practices through QA/QC approaches and drafting recommendations for the compilation of sectorial high resolution emission inventories that are relevant at the urban scale.

• Metadata recommendation

Elaborating recommendations for a common system to document the use of ancillary data and define the relevant meta-data that support each emission inventory at the urban scale. • Benchmarking and Emission dashboard

Benchmarking and creating an emission dashboard (EU, bottom-up national and local inventories) to monitor progress and identify inconsistencies among inventories. Regular inter-comparisons will be carried out to support this objective.

- Use of Composite mapping platform
- i) as spatial information support to evaluate specific sectors/ topics identified as inconsistency by the dashboard;

ii) to carry out emission evaluation in relation with activities of the composite mapping for assessment purposes

Provide relevant feedback

To European inventories used for regulatory purposes (EMEP, CAMS-REG) and research project (e.g., REMI, RI-URBANS, NordicWelfAir, "Others").

Activities in 2023

Best – practise through QA/QC

Identifying best practices through QA/QC approaches and drafting recommendations for the compilation of sectorial high resolution emission inventories that are relevant at the urban scale.

Metadata recommendation

Elaborating recommendations for a common system to document the use of ancillary data and define the relevant meta-data that support each emission inventory at the urban scale.

• Benchmarking and Emission dashboard

Benchmarking and creating an emission dashboard (EU, bottom-up national and local inventories) to monitor progress and identify inconsistencies among inventories. Regular inter-comparisons will be carried out to support this objective.

Use of Composite mapping platform

i) as spatial information support to evaluate specific sectors/ topics identified as inconsistency by the dashboard;

ii) to carry out emission evaluation in relation with activities of the composite mapping for assessment purposes

Provide relevant feedback

To European inventories used for regulatory purposes (EMEP, CAMS-REG) and research project (e.g., REMI, RI-URBANS, NordicWelfAir, "Others").

Technical Meeting programme

The New Composite Mapping for Emissions Functionalities:

i) Dashboard:

EU wide emission inventories, EMEP, CAMS-REG, EDGAR;

ii) Aggregated emission composite mapping:

emission evaluation for assessment purposes

PROGRAMME

- Welcome and Introduction to WG7 session (Susana Lopez-Aparicio)
- Methodology behind benchmarking of emissions (Marc Guevara)
- Emission composite mapping Status and way forward (Susana Lopez-Aparicio)

Methodology behind benchmarking of emissions

M. Guevara¹, S. López-Aparicio², P. Thunis³, M. Marioni³ and E. Pisoni³

¹ Barcelona Supercomputing Center
² NILU – The Climate and Environmental Research Institute
³ JRC - European Commission Joint Research Centre

The approach intends to answer the following questions:

- Are there inconsistencies in total pollutant emissions at the country/region level?
- Are there inconsistencies in the sectoral contributions to the total emissions at the country/region level?
- Are there inconsistencies in the spatial distribution of emissions across urban areas (NUTS3 / FUA)?

Inconsistencies are assessed per pollutant, sector and urban area (NUTS3/FUA)

Detection of **relevant** inconsistencies

- **Spatial coverage**: Country/Region/Model domain
- **Focus areas**: NUTS3/FUA (only aggregated non gridded emissions are needed)
- Sectors: Traffic (GNFR F), commercial and residential (GNFR C), agriculture (GNFR K + L), industry (GNFR A + B), shipping (GNFR G), Solvents (GNFR E), Fugitive (GNFR D), Off-road (GNFR I + H), Waste (GNFR J)
- Pollutants: SO2, NH3, PM2.5, PMCO, NOx, NMVOC
- Regional emission inventory: CAMS-REG-APv6.1 (year 2019) (EMEP, EDGAR, ens)
- **Default relevance threshold (** γt **) =** 0.5
- Default inconsistency threshold $(\beta t) = 2$

Inconsistencies represented using three graphical forms:

- Overview diamond diagram (all inconsistencies considered)
- Bar chart (only largest inconsistencies shown)
- Overview map (only spatial inconsistencies shown)

Overview diamond diagram

- Number of Inconsistencies (NI) = 22 (34%)
 - $FAS = 20 = N^{\circ}$ of inconsistencies for urban share
 - LSS = 2 = N^o of inconsistencies for country sectoral share
 - LPT = $0 = N^{\circ}$ of inconsistencies for country totals
- 18 inconsistencies from GNFR A+B (industry)
- 15 inconsistencies from SO2
- Emission Consistency Indicator (ECI) = 5.63: Inconsistencies are up to 5.63 times the assumed level of uncertainty (factor of 2 by default)
- Colours to identify sector, shape to identify pollutant and filling to identify cause of inconsistency and size the magnitude of the inconsistency

Bar chart

SEC

POL

SO2

Identify the top 5 inconsistency ratios for each of the three targeted aspects:

- LPT (country pollutant total)
- LSS (country sectorial share)
- FAS (spatialisation)

Red shading indicates an **overestimation** and **blue shading** an **underestimation** of the local emission inventory with respect to the regional inventory

NOx / SO2: Check sectoral allocation at country level: less emissions in local inventory for GNFR A + B (industry)

SO2 / PM2.5: check spatial allocation in several NUTS3 for GNFR A + B (industry)

Overview map

Identify the most important **spatial** inconsistency for each NUTS3/FUA

- size is proportional to the magnitude of the inconsistency
- symbol shapes, colors, and filling remain similar to the overview diamond.

More details and examples:

Thunis, P., Clappier, A., Pisoni, E., Bessagnet, B., Kuenen, J., Guevara, M., and Lopez-Aparicio, S.: A multi-pollutant and multi-sectorial approach to screening the consistency of emission inventories, Geosci. Model Dev., 15, 5271–5286, <u>https://doi.org/10.5194/gmd-15-5271-2022</u>, 2022.

Thunis, P., Kuenen, J., Pisoni, E., Bessagnet, B., Banja, M., Gawuc, L., Szymankiewicz, K., Guizardi, D., Crippa, M., Lopez-Aparicio, S., Guevara, M., De Meij, A., Schindlbacher, S., and Clappier, A.: Emission ensemble approach to improve the development of multi-scale emission inventories, EGUsphere [preprint], <u>https://doi.org/10.5194/egusphere-2023-1257</u>, 2023.

Emission Composite Mapping –

Status and way forward

S. López-Aparicio¹, M. Guevara², P. Thunis³, M. Marioni³ and E. Pisoni³

¹ NILU – The Climate and Environmental Research Institute

- ² Barcelona Supercomputing Center
- ³ JRC European Commission Joint Research Centre

Aim: In addition to annual gridded concentration, we aim at assessing and comparing the underlying emissions to set up the basis for best-practices and recommendations for the compilation of emission inventories.

What it is needed: Annual emissions aggregated over pre-defined spatial areas (non-gridded):

- \rightarrow NUTS3 that are covered by the modelling domain
- → predefined local areas; e.g., FUA (Functional Urban Area a city and its commuting zone)

How: the screening methodology will follow Thunis et al. (2021) to flag main inconsistencies when compared with EU wide inventories.

Output: Having concentration and MQI as reference, identification of inconsistencies at i) pollutant; ii) sector; iii) type (national, sector share, spatial distribution) levels

What it is needed: Annual emissions aggregated over pre-defined spatial areas (non-gridded):

 \rightarrow NUTS3 that are covered by the modelling domain \rightarrow predefined local areas; FUA

INPUT

Precursor considered	NO _x , NMVOC, NH ₃ , SO ₂ , PM25, PM10	
Temporal	Annual totals	
Year considered	Year used as basis for assessment	
Sector considered	Traffic (GNFR F), commercial and residential (GNFR C), agriculture (GNFR K + L), industry (GNFR A + B), shipping (GNFR G), Solvents (GNFR E), Fugitive (GNFR D), Off-road (GNFR I + H), Waste (GNFR J)	
Spatial aggregation	Emissions aggregated to NUTS3 covered by the modelling domain PLUS emissions over a series of smaller areas defined by shape files A <u>pre-processing programme</u> is made available by the JRC to aggregate emissions over the different areas starting from gridded data.	
Data format	Spatially aggregated: 2 excel files (output of the <u>JRC pre-processor</u>): 1 for the NUTS3 entirely covered by the modelling domain, the second for all local areas (FUA). A template and additional information is provided in the annex of this document	

Basic information	Inventory code (visualisation name)	
	Inventory name (e.g. CAMS-REG)	
	Inventory version	
	Reference year	
	Country (main country covered)	
	Area (sub-national area – optional)	

METADATA

What it is needed: Annual emissions aggregated over pre-defined spatial areas (non-gridded):

 \rightarrow NUTS3 that are covered by the modelling domain \rightarrow predefined local areas; FUA

INPUT

Precursor considered	NO _x , NMVOC, NH ₃ , SO ₂ , PM25, PM10	
Temporal	Annual totals	
Year considered	Year used as basis for assessment	
Sector considered	Traffic (GNFR F), commercial and residential (GNFR C), agriculture (GNFR K + L), industry (GNFR A + B), shipping (GNFR G), Solvents (GNFR E), Fugitive (GNFR D), Off-road (GNFR I + H), Waste (GNFR J)	
Spatial aggregation	Emissions aggregated to NUTS3 covered by the modelling domain PLUS emissions over a series of smaller areas defined by shape files A <u>pre-processing programme</u> is made available by the JRC to aggregate emissions over the different areas starting from gridded data.	
Data format	Spatially aggregated: 2 excel files (output of the <u>JRC pre-processor</u>): 1 for the NUTS3 entirely covered by the modelling domain, the second for all local areas (FUA). A template and additional information is provided in the annex of this document	

Some lessons learned

- NUTS shapefiles (2021 vs 2016);
- Follow recommended guidelines, e.g., naming convention.
 - PM25: either written as PM25, PM2.5, PM2_5
 - GNFR: sometimes inverted GNFRIJ vs GNFRJI.
- The number of columns in the file is not always correct.
- Problems with the pre-processing programme → Improving is an on-going process, if you experience problems, please report it.

Funtionalities: i) Dashboard: EU wide emission inventories, EMEP, CAMS-REG, EDGAR; ii) Aggregated emission composite mapping: emission evaluation for assessment purposes

i) DASHBOARD

- Three main figures 1.
 - current status based on latest version and а. latest reporting year. Includes details inconsistencies in terms of sectors / pollutants / type / inventory.
 - b. Historical trends (for inconsistency levels)
 - Consistency map C.
- User-free comparison interface 2.

NUTS3 / Urban

Funtionalities: i) **Dashboard:** EU wide emission inventories, EMEP, CAMS-REG, EDGAR; ii) **Aggregated emission composite mapping:** emission evaluation for assessment purposes

i) DASHBOARD - User interphase

Sectors to visualize	Pollutants to visualize		
Thresh. Relevance	Thresh. Inconsistency		
NUTS3 / Urban	Zoom: EU / Country		
Year 1	Year 2		
EI 1	EI 2		
CAMS X CAMS Y	CAMS X CAMS Y		
EMEP X EMEP Y	EMEP X EMEP Y		
 EDGAR X EDGAR Y	 EDGAR X EDGAR Y		
 ENS X ENS Y	ENS X ENS Y		

...

...

European Commission

ii) Aggregated emission composite mapping; benchmark local emission inventories with EU wide inventories to assess inconsistencies.

European Commission

FAIRMODE

EU Composite Maps: pageEmisEval

JRC [ES] 2019 (AL	
\square JRC TEST 2019 (AI	MAPEIRE_2019_ (ALL
	MAPEIRE_2019_ (ALL
	. NILU_2019_ (ALL)_N
MAPEIRE_2019_ (ALL	. □ NILU 2019 (ALL) N
NILU_2019_ (ALL)_N	
NILU_2019_ (ALL)_N	PREPAIR_2017_ (ALL.
PREPAIR 2017 (ALL	PREPAIR_2017_ (ALL.
	UBA_2018_ (ALL)_DE
	□ UBA 2018 (ALL) DE
UBA_2018_ (ALL)_DE	
UBA_2018_ (ALL)_DE	UBA_2018_ (ALL)_DE
□ UBA 2018 (ALL) DE	UBA_2018_ (ALL)_DE
	UBA_2018_ (ALL)_DE
	□ UBA 2018 (ALL) DE
UBA_2018_ (ALL)_DE	
UBA_2018_ (ALL)_DE	
□ cams v61 2015	cams_v61_2016
\square came v61 2016	cams_v61_2017

Create

Demo Show Map

...Status Bar... cams_v61_2017(cams_NUTS2016_3_v61.csv)

- Kick off meeting on the new compositite mapping (12/05)
- Contribution: Annual emissions aggregated over pre-defined spatial areas

Region or country	Contact	EMISSIONS	CONCENTRATION
Austria	Claudia Flandorfer		
Belgium	Frans Fierens		
Czech Republic	Nina Benesova		
Croatia	Milic Velimir		
Denmark	Matthias Ketzel		
France	Elsa Real		
Germany	Stephan Nordmann		
Republic of Ireland	Kate Johnson		
Italy	Antonio Piersanti		
Madrid	Rafael Borge		
Norway	Bruce Denby		
Norway	Susana Lopez-Aparicio		
Poland	Pawel Durka		
Po Valley, Italy	Michele Stortini		
Slovenia	Luka Matavz		
Spain	Mark Theobald		
Sweden	Helen Alpfjord		

Status by 28th September

Priorities

- PMco and PM25: Issue in overall total (fact 2 +)
- **PMco**: less emissions in transport at country level in local inv.
- **NMVOC**: less emissions in agriculture at country level in local inv.
- SO2: check spatial allocation in several NUTS for industry (up to fact 12)
- PM2.5: check spatial allocation in several NUTS for residential (up to fact 10)
- Shipping: spatial allocation issue in ITC33 (NOx and SO2) (up to fact 20)
- NH3: check spatial allocation in several NUTS for agriculture

Po Valley

Priorities

- NOx and SO2: Check sectoral allocation at country level: less emissions in local inventory for industry
- SO2: check spatial allocation in several NUTS for industry (up to fact 6)
- PM2.5: check spatial allocation in several NUTS for industry (up to fact 10)

Priorities

- **PM2.5:** Country sectoral shift (check residential)
- **SO2**: check spatial allocation in several NUTS for industry (up to fact 7)
- **PM25**: check spatial allocation in several NUTS for residential (up to fact 4)

Poland

Slovenia

Main LPT-LSS-FAS inconsistencies (cams2021 vs Poland) PL_S02 Ы PL_NMVOC_D PL_NMV0C_E SS PL_PMCO_A PL_NMV0C_C PL22C_PMCO_D PL227_PMCO_D AS PL22A_PMCO_D Ŀ PL229_PMCO_D PL913_S02_A ____ 0 10 20 30 40 Inconsistency ratio

Austria

Main LPT-LSS-FAS inconsistencies (cams2021 vs Ireland)

<u>_____</u>

Inconsistency ratio

3

2

Р

LSS

FAS

4

Italy

European Commission

Ireland

IE051_S02_

IE061_PMCO_A

IE061_NMVOC_

0

• Contributions are still welcome

• Distribute available results to the contact persons so they can start interpreting the results;

• Open the dashboard to FAIRMODE community to evaluate results and inconsistencies (incl. modifying parameters / focuss on specific sectors);

• Organize a first online workshop to discuss inconsistencies (before Xmas);

 Start drafting lessons learned to draw <u>whest practise and recomendations</u> for the development of emission inventories;