CAMS – FAIRMODE WG8 Joint evaluation exercise Natural Dust contribution to exceedances of limit values

Contribution from Malta

by Ruth Borg & Ariana Schembri.

Atmosphere Monitoring

7th CAMS policy user workshop 04 October 2023

Episode selected and methods used

Daily means

Atmosphere Monitoring

Episode period: 28th - 31st March 2022

- As discussed during the April session, several MS opted to analyse this episode since this was a common episode amongst many, including Malta.
- Currently methodology used: in accordance with the COMMISSION STAFF WORKING PAPER establishing guidelines for demonstration and subtraction of exceedances attributable to natural sources under the AAQD
- Testing CAMS dust products:
 - E1a Interim re-analysis DUST/PM₁₀
 - E1a Forecast DUST/PM₁₀
 - CAMS Global Dust
 - CAMS Regional forecast dust
 - CAMS Regional Re-analysis for PM₁₀ Dust Fraction
 - CAMs Regional PM₁₀ Re-analysis

Natural Dust contribution – Current method

Atmosphere Monitoring

- After verification, the PM₁₀ daily averages measured in our rural background station in Gharb and our traffic station in Msida are plotted;
- Due to the homogeneity of the two datasets we analyse the highest concentrations monitored at both stations;
- The identification of Saharan episode is then confirmed by using the method described by *Gómez Losada et al (2016),* which uses *Hidden Markov Models*;
- PM₁₀ concentration regimes are determined by this model which are attributed to different sources or groups of sources;
- The PM₁₀ values grouped by these regimes are plotted accordingly and those which exceed the daily limit value are further analysed using NASA Worldview Snapshot, NOAA HYSPLIT single-particle backward trajectories and Ensemble Forecasts provided by the Barcelona Dust Regional Centre.

Natural Dust contribution – Current method

- As described in the CION working paper, the regional and temporary background concentration is determined by averaging the background measurements approximately 15 days before and after each particular episode;
- The resulting surplus is then subtracted from the respective episode values of Gharb station and Msida station;
- Sea salt is also deducted from the PM₁₀ value without Saharan dust

Dates	PM ₁₀ value before correction (μg/m³)	Calculated PM ₁₀ dust contribution – Current method (µg/m ³)	PM ₁₀ value after deduction of dust contribution (μg/m ³)	PM ₁₀ value without natural contribution (µg/m ³) (sea salt and Sahara dust)
28/03/2022	67.5	28.12	39.38	35.4
29/03/2022	53.8	23.82	29.98	27.8
30/03/2022	66.8	43.32	23.48	16
31/03/2022	99	54.02	44.98	40.89

Zejtun urban background station data

opernicus

Natural Dust contribution – CAMS method

Malta has applied three different methodologies:

1) Assumption that the DUST data is made up of Saharan dust only without the inclusion of anthropogenic dust (resuspension), agricultural dust, etc.

 $PM_{NDD} = PM_{10}total - PM_{10}DUST$

Atmosphere

Monitoring

2) Estimating the share of natural dust in the FC and IRA using actual monitored Saharan dust fractions by dividing the monitored Saharan dust by Malta's monitored total PM_{10} apply that % share to the IRA/FC PM_{10} total and subtracting the estimated Saharan dust fraction.

 $PM_{ratio} = (MT_{Sahara}/MT_PM_{10} total)$

 $PM_{NDD} = PM_{10} total - PM_{ratio}$

3) Calculating a bias between Malta monitored data vs PM₁₀_total and deducting that same bias from the PM₁₀_total.

 $PM_{BIAS} = MT_PM_{10}total - PM_{10}total$

 $PM_{NDD} = PM_{10}total - PM_{BIAS}$

Method number	Date	PM10 value before correction			Calculated PM10 dust contribution – «Current method»	Calculated PM10 dust contribution – «CAMS based method»		PM10 Concentration with NDD		
		FC	IRA	MT		FC	IRA	FC	IRA	MT
1 -	28/03	56.1	48.9	58.6	28.12	38.4	32.6	17.7	16.3	39.38
	29/03	55.5	41.3	59.1	23.82	32.6	20.3	22.9	21.0	29.98
	30/03	86.1	52.6	81.8	43.32	61.1	35.8	25.0	16.8	23.48
	31/03	92.0	81.8	77.0	54.02	75.7	69.6	16.2	12.3	44.98
2 -	28/03	56.1	48.9	58.6	28.12	23.4	20.4	21.3	18.5	39.38
	29/03	55.5	41.3	59.1	23.82	24.6	18.3	23.3	17.3	29.98
	30/03	86.1	52.6	81.8	43.32	55.8	34.1	24.5	14.9	23.48
	31/03	92.0	81.8	77.0	54.02	50.2	44.7	22.2	19.7	44.98
3 -	28/03	56.1	48.9	58.6	28.12	11.4	18.6	44.7	30.2	39.38
	29/03	55.5	41.3	59.1	23.82	-1.7	12.5	53.8	53.8	29.98
	30/03	86.1	52.6	81.8	43.32	-19.3	14.2	66.8	66.8	23.48
	31/03	92.0	81.8	77.0	54.02	7.0	17.2	85.0	64.7	44.98

Main questions to be discussed

Atmosphere Monitoring

- The resolution for the CAMS PM₁₀ Natural Dust Viewer is not optimal for Malta:
 - To include the boundary for Malta at this resolution
 - Provide better resolution zooming in function would be ideal
- At this extent we can only observe ranges since colours overlap where we believe MT to be.

	MT official	Regional Forecast	Global	Regional Reanalysis for	
Date	Data	Dust	Dust	PM10 Dust Fraction	Regional PM10 Reanalysis
28/03/22	45.3	40-50	20-30	50-55	65-75
29/03/22	41	40-45	55-65	30-40	35-45
30/03/22	60.5	60-65	45-55	25-30	50-60
31/03/22	71.2	70-80	85-90+	65-75	75-90+

Data from Msida traffic station

CAMS Regional PM10 Reanalysis 29-03-2022

FAIRMODE

for air quality modelling in Europe

Europea

Lessons learned, limitations and next steps

Atmosphere Monitoring

- The *second* methodology was determined to be the most appropriate out of all three. However, the main reason for this is because we are applying the actual monitored Sahara dust to PM₁₀ ratio and deducting it from the PM₁₀ total of both IRA and FC;
- DUST portion includes all types of dust so without knowing the actual %^{age} share, other methodologies have to be used;
- Modelling might provide over/under estimates if it takes into consideration gridded regional background;
- Comparisons with modelled CAMS concentrations (not-verified) are being analysed against verified monitored data.
- Malta is not visible on the viewer, so a zooming in option (which can enlarge the extent) would be more appropriate for us to compare with CAMS data.

Next steps

• Review other MS methodologies and potentially make use of these methods and compare.

Thank you!

