

27-29 June 2016

CAMx - Source Apportionment - Lessons learned

<u>G. Pirovano</u>, P. Brotto, J. Ferreira, Y. Long, C. Emery, G. Yarwood, F. Pradelle, S. Pillon, A. Dalla Fontana, A. Poupkou, N. Liora, D. Melas

CAMx simulation setup

CAMx setup

CAMx setup - PSAT

PSAT - Particulate Source Apportionment Technology (Yarwood et al., 2004)

PSAT uses reactive tracers to apportion primary PM, secondary PM and gaseous precursors to secondary PM among different source categories and source regions.

- detect the role played by the different emission sources
- investigate, source by source, the influence of non linear chemical system on the evolution of the PM concentration

A similar technology has been developed for ozone (OSAT).

CAMx simulation setup

Domain & sites..

Emission categories

Mandatory categories

Optional categories

01 - Electric Energy production	01 - Electric Energy production
02- BIO - Domestic heating (b. burning)	02-BIO - Domestic heating (biomass burning)
03-04 - Industrial processes	03-04 - Industrial processes
07 - Transport (all)	07-RTR - Transport (others)
	71-RTG - Transport (gasoline)
	72-RTD - Transport (heavy duty)
	75-RTW - Transport (wear)
08 – Shipping	08 – Shipping
11 0	
10 – Agriculture	10 – Agriculture
10 – Agriculture 11 - Dust	10 – Agriculture 11-DST – Dust
10 – Agriculture 11 - Dust 99 - Other Anthrop + MS2 other + SSalt +	10 – Agriculture 11-DST – Dust 11-SLT – Sea Salt
10 – Agriculture 11 - Dust 99 - Other Anthrop + MS2 other + SSalt + BVOC	10 – Agriculture 11-DST – Dust 11-SLT – Sea Salt 11-BSO – Biogenic VOC
10 – Agriculture 11 - Dust 99 - Other Anthrop + MS2 other + SSalt + BVOC	10 – Agriculture 11-DST – Dust 11-SLT – Sea Salt 11-BSO – Biogenic VOC 99 - Other Anthrop

ALL_BC - contribution of boundary conditions

Screening analysis

- Gridded Source Contribution Estimates
- Spatial patterns
- Seasonal differences
- Local vs regional sources

Summer Episode - Mandatory

Base case configuration - Summer mean

Summer Episode - Mandatory

Base case configuration - Summer mean

Winter Episode - Mandatory

Winter Episode - Mandatory

Base case configuration - Winter mean

Average Source Contribution Estimates at receptors

- Mean Source Contribution Estimates
- Comparison with RM estimates
- Seasonal differences
- Local vs regional sources (first guess)
- Secondary PM apportionment

Summer Episode - Optional - PM₁₀

Base case configuration - Summer mean

Ricerca sul Sistema Energetico - RSE S.p.A. Guido Pirovano – FAIRMODE meeting (Zagreb 27-29 June 2016)

12

Summer Episode - Optional - PM₁₀

Base case configuration - Summer mean

Ricerca sul Sistema Energetico - RSE S.p.A.

Guido Pirovano – FAIRMODE meeting (Zagreb 27-29 June 2016)

Winter Episode - Optional - PM₁₀

Base case configuration - Winter mean

Winter Episode - Optional - PM₁₀

Base case configuration - Winter mean

Ricerca sul Sistema Energetico - RSE S.p.A.

Guido Pirovano – FAIRMODE meeting (Zagreb 27-29 June 2016)

Summer Episode - Optional - EC

Base case configuration - Summer mean

Summer Episode - Optional - EC

Base case configuration - Summer mean

Ricerca sul Sistema Energetico - RSE S.p.A.

Guido Pirovano – FAIRMODE meeting (Zagreb 27-29 June 2016)

Winter Episode - Optional - EC

Base case configuration - Winter mean

Winter Episode - Optional - EC

Base case configuration - Winter mean

Ricerca sul Sistema Energetico - RSE S.p.A.

Guido Pirovano – FAIRMODE meeting (Zagreb 27-29 June 2016)

Summer Episode - Optional - NO₃⁻

Base case configuration - Summer mean

Summer Episode - Optional - NO₃⁻

Base case configuration - Summer mean

Ricerca sul Sistema Energetico - RSE S.p.A.

Guido Pirovano – FAIRMODE meeting (Zagreb 27-29 June 2016)

Winter Episode - Optional - NO₃⁻

Base case configuration - Winter mean

Winter Episode - Optional - NO₃⁻

Base case configuration - Winter mean

SCEs time series and comparison with observations

- Temporal evolution of SCEs
- Relationship between SCEs and meteorology
- SCEs and Model Performance
- Local vs regional sources (first guess)
- Secondary PM apportionment

Winter Episode - Optional - PM₁₀

Lens - Base case configuration - Daily time series

Winter Episode - Optional - OM

Lens - Base case configuration - Daily time series

Winter Episode - Optional - EC

Lens - Base case configuration - Daily time series

Winter Episode - Optional - NO₃⁻

Lens - Base case configuration - Daily time series

Winter Episode - Optional - SO₄=

Lens - Base case configuration - Daily time series

Winter Episode - Optional - NH₄⁺

Lens - Base case configuration - Daily time series

PSAT Sensitivity analysis

- CAMx MPE and SCEs were not very sensitive to differences in input setup
- Changes in dispersion efficiency reduce absolute concentrations but are less effective on relative contributions
- Changes in grid resolution have different impact on local and regional sources, influencing the corresponding source contribution, particularly at urban sites.

Further analysis

- Evaluation of both source categories and regions (urban, regional, etc...)
- Tracers?
- Improving Organic Aerosol modelling

Open issues

- Are there systematic differences between tagged approaches and brute force methods?
- Is there an influence of OC underestimation on SCEs?
- Is there an influence of (likely) underestimation of PMcoarse on SCEs?
- How can RMs results improve CTMs MPE and SA? Use of organic tracers?...
- How can we combine RMs and CTMs results to provide more reliable and thorough SCEs?