

Preliminary results of the source apportionment inter-comparison exercise 2015-2016 (part 3)

C.A. Belis and D. Pernigotti

European Commission, Institute for Environment and Sustainability – JRC

G. Pirovano RSE SpA

In collaboration with:

M.T. Pay (BSC), M. Rezler (WTU), O. Favez (INERIS), J.L. Jaffrezo (LGGE), J. Kuenen/ H. Denier van Der Gon (TNO)

and the Fairmode community

Fairmode Technical meeting Zagreb, 27-29 June 2016

Participants

Commission

Joint Research

RM: 33 participants – 38 results		
AGH-UST	ISAC LE	RIVM
APPATN	FMI	SAGE
ARPA ER	IDAEA_T	UCC
ARPA LO	IDAEA_A	UMH
ARPA PU	IMROH	UNIBO
ARSO	ISSeP	UNIHE
AUTH	IST	UNIMI
CARES	LGGE+	UNMIB
CNR IIA	NCSR	UNIFI
ENEA	PSI	UNIGE
ISAC BO	PUC	WUT

CTM: 7 participants - 11 results

ENEA /ARIANET/ ARPA PIEMONTE	joint result
CIEMAT/LISA CNRS	jont result
RIER- UNI KOLN	independent result
TNO	independent result
ARPAV	coodinated result
RSE	coordinated results
UNIAVE	cordinated results

A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S, T,U,V,W,X,Y,Z,*A,*B,*C,*D,*E,*F,*G,* H,*I,*J,*K,*L

Belis, Pernigotti, Pirovano FAIRMODE WG3

cA,cAo,cAs,cAso,cAs2,cB,cBo,cD,cDo, cE,cEo,cF

Intercomparison set up

European Commission

RM 09/03/2011 to 06/03/2012 every 3 days 24 hours mean 116 time steps (samples) PM10 98 chemical species

CTM

Summer: 1/6/2011 to 1/08/2011 Winter: 15/11/2011 to 5/2/2012 Hourly data c.a 4300 time steps (hours) PM10 and PM2.5 7 chemical species

CHEMICAL SPECIES - comparison between RM and CTM

	RMs	CTMs	
		nitrate (NO3), sulphate (SO4),	
IONS	8 species	ammonium (NH4),	
	EC/OC	elemental carbon (EC), organic	
carbonaceous fraction	2 species	carbon x k = (POA+SOA)	
TRACE ELEMENTS	25 species	other primary aerosol (OPA)	
PAHs	15 species		
LEVO/MANN	3 species		
HOPANES	10 species	POA+SOA	
N-ALKANES	29 species		
CHOLESTEROL			
POA MARKERS	4 species	primary organic aerosol (POA),	
OTHER	Pristane, Phytane, Glucose		
		secondary organic aerosol (SOA),	
TOTAL	98	7	

Definition of sources CTM

			European
SNAP		Mandatory	Optional
		8	14
1	Energy industry	01_ENI	01_ENI
21	R & C combustion, coal	99_OTH	02_OTH
22	R & C combustion, light liquid fuel	99_OTH	02_OTH
23	R & C combustion, medium liquid fuel	99_OTH	02_OTH
24	R & C combustion, heavy liquid fuel	99_OTH	02_OTH
25	R & C combustion, gas	99_OTH	02_OTH
26	R & C combustion, solid biomass (wood)	02_BIO	02_BIO
34	Industry (combustion & processes)	34_IND	34_IND
5	Fugitive emissions from fuels	99_OTH	99_OTH
6	Product use including solvents	99_OTH	99_OTH
71	Road transport, exhaust, gasoline	07_RTR	71_RTG
72	Road transport, exhaust, diesel	07_RTR	72_RTD
73	Road transport, exhaust, LPG/natural gas	07_RTR	07_RTR
74	Road transport, non-exhaust, evaporation	07_RTR	07_RTR
75	Road transport, non-exhaust, wear	07_RTR	75_RTW
8	Non-road transport	99_OTH	99_OTH
81	International shipping, marine diesel oil	08_SHP	08_SHP
82	International shipping, heavy fuel oil	08_SHP	08_SHP
9	Waste treatment	99_OTH	99_OTH
10	Agriculture	10_AGR	10_AGR
11P	Dust	11_DST	11_DST
11	Sea Salt	99_OTH	11_SLT
11	Biogenic SOA	99_OTH	11_BSO

8 - 14 source categories defined for comparability with RM source categories (SPECIEUROPE used as reference) The optional set with higher detail on domestic, traffic and primary inorganic aerosol (dust/salt)

3 + 3 summer/winter months Hourly concentrations (current evaluation for daily averages) Primary and secondary PM PM precursors

SOURCES - comparison between RM and CTM

СТМ	RM corresp.	СТМ	RM corresp.	
Mandatory	Mandatory	Optional	Optional	
01_ENI	28 power plant or 30 fuel oil combustion	01_ENI	28 power plant or 30 fuel oil combustion	
99_OTH				1
99_OTH				1
99_OTH		02_OTH		
99_OTH				
99_OTH				
02_BIO	40 biomass burn.	02_BIO	40 biomass burn.	
34_IND	20 industry	34_IND	20 industry	
99_OTH		99_OTH		
99_OTH		99_OTH		
		71_RTG	2 autourst	
		72_RTD	2 exhaust	
07_RTR	1 traffic	07_RTR (OTH)		
		07_RTR (OTH)		
		75_RTW	5 road dust	1
99_OTH		99_OTH		
08_SHP	37 ship, 30 fuel oil	08_SHP	37 ship, 30 fuel oil	
99_OTH		99_OTH		
10_AGR	NH4 sum	10_AGR	NH4 sum	not shown
11_DST	10 dust	11_DST	10 dust	1
99_OTH		11_SLT	12 marine, 71 aged sea salt	
99_OTH		11_BSO		
NN4+NO3+SO4	60 SIA	NN4+NO3+SO4	60 SIA	

SOURCE CATEGS, (SPECIEUROPE)

	traffic
	exhaust
0	soil
2	marine (fresh sea salt
0	industry
8	power plant
0	fuel oil
1	coal
7	ship
0	biomass burning
1	wood burning
	road dust
0	SIA
1	ammonium nitrate
2	ammonium sulphate
6	deicing salt
0	POA
1	aged sea salt
4	combustion

Zagreb 27-29 June 2016

6

6

Belis, Pernigotti, Pirovano FAIRMODE WG3

Research Centre

Evaluation in this IE

RM

Complementary tests:

Mass apportionment Number of factor/sources

SINGLE SITE

Preliminary tests:

Chemical profiles Contribution-to-species (all) Time-trends

Performance tests Z-scores zeta-scores вотн

Complementary tests:

Mass apportionment Number of factor/sources

Preliminary tests:

SITE

SINGLE

Chemical profiles Contribution-to-species (selected ones Time-trends-

Performance tests:

Z-scores

zeta-scores

RMSD*

Joint Research Centre

СТМ

Complementary tests:

Mass apportionment Number of factor/sources

Preliminary tests:

Chemical profiles Contribution-to-species (seleted ones)

Time-trends

MULTI SITE

Performance tests:

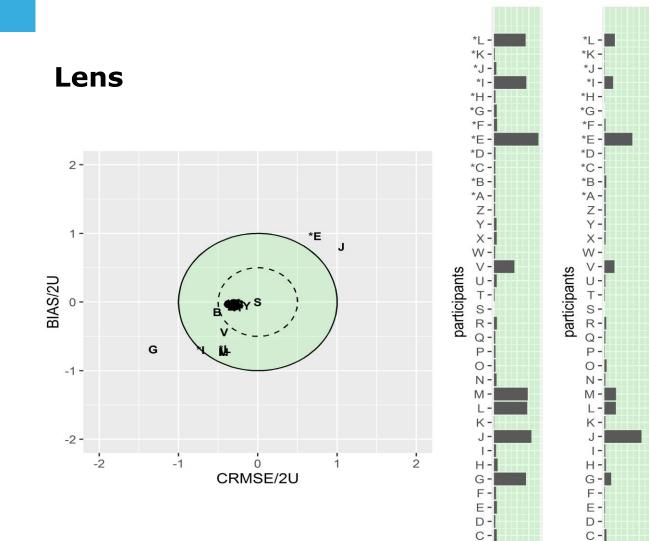
Z-scores

zeta-scores-

RMSD*

Zagreb 27-29 June 2016

Belis, Pernigotti, Pirovano FAIRMODE WG3



RM-CTM preliminary tests

Belis, Pernigotti, Pirovano FAIRMODE WG3

MASS CLOSURE RM

в-

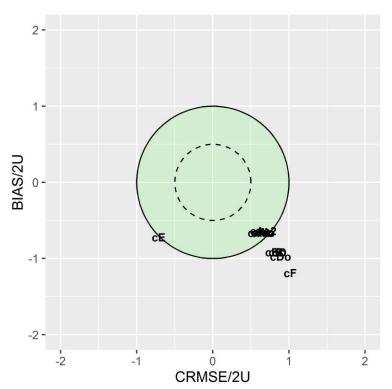
A-

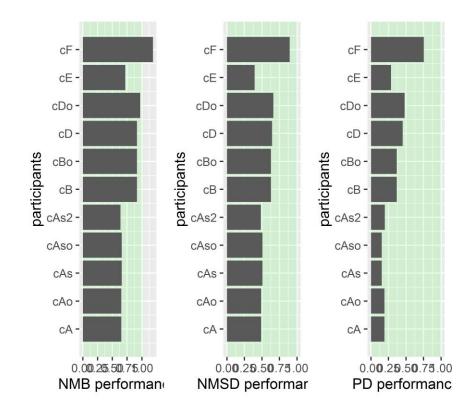
0.0025607500

в-

A -

*L -*K -*J -*| -*H · *G -*F -*E -*D -*C -*B -*A -Z -Y -X -W-V participants U-Тs-R-Q-P -0-N -M -L-K -J -1 н-G-F -E -D -C в-A -0.0025007500 0.002560750 NMB perform: NMSD perform PD performa


Bens, I chingotti, I novano i Attenue was


ZJ JUIIC ZUTU LUYIED ZI

MASS CLOSURE CTM

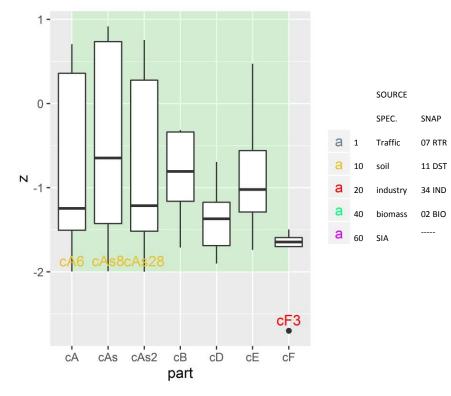
Lens

Belis, Pernigotti, Pirovano FAIRMODE WG3

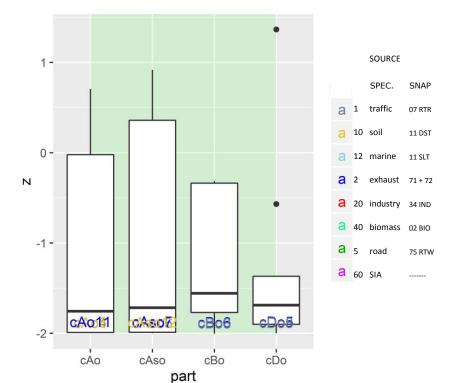
Joint Research Centre

CTM performance tests using the RM references

Belis, Pernigotti, Pirovano FAIRMODE WG3



Performance RM CTMs z-score (overall sce)

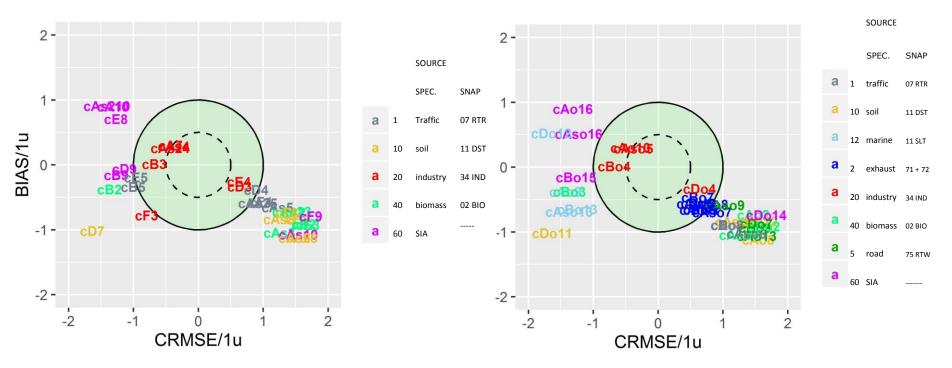


Lens

mandatory

optional

In general CTM tend to underestimate sce Mandatory: Underestimation of soil for result A and of SIA for result F Optional: understimation of soil and exhaust


Belis, Pernigotti, Pirovano FAIRMODE WG3

Performance RM CTMs Target plot (sce time series)

Lens

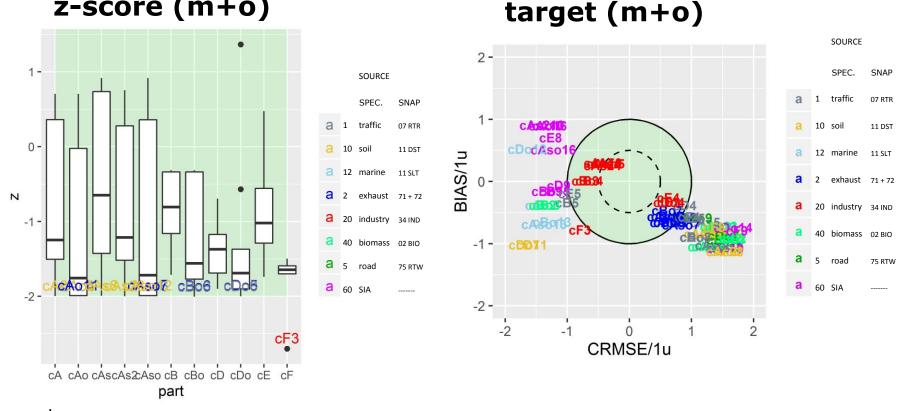
mandatory

optional

Target values normalized by $1 \times (not 2x)$ uncertainty of the reference -> more stringent criteria Mandatory: industy often in the acceptance area.

Optional: both industry and exhaust in the acceptance area

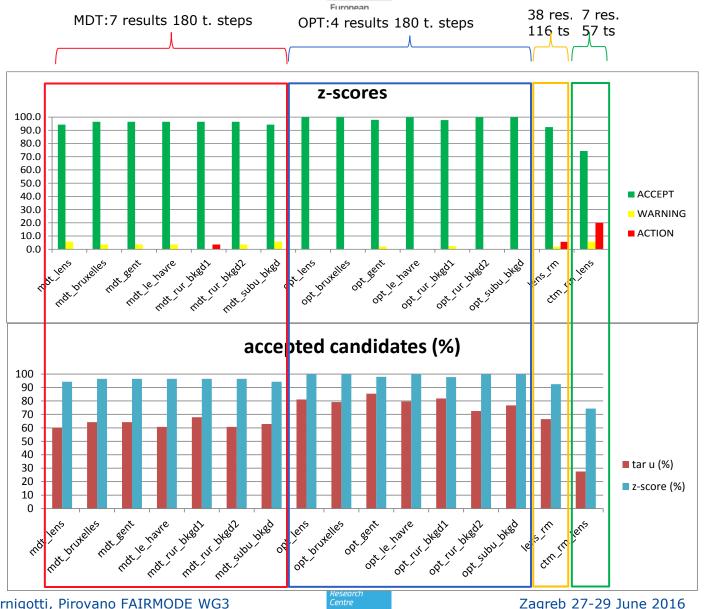
Belis, Pernigotti, Pirovano FAIRMODE WG3


Joint Research Centre

Performance RM CTMs z-score and target

Lens

z-score (m+o)


z-scores show understimation of soil and exhaust for the overall average; industry underestimated by model not reporting amm nitrate.

Target plot show more discrepancies with a tendency to underestimate for most sources with the exception of SIA;

industry and exhaust performing well. Belis, Pernigotti, Pirovano FAIRMODE WG3 Research

Performance RM CTMs ALL RECEPTORS

London and Paris not included in this analysis

Belis, Pernigotti, Pirovano FAIRMODE WG3

Preliminary synthesis of the IE

- High number of participants and high quality of input data => robust results
- RM: mainly one model (PMF5) good performance for overall dataset (z-score 92%), more difficulties with time series (target (1u) 66%).
- RM: industry most problematic source.
- RM: uncertainty of chemical profiles in line with the reference
- CTM: high homogeneity among participants/models (z-scores >90%; target (1u) 60-70% in mandatory and 70 80% in optional sets, respectively.
- CTM: no meaningful differences in the performance between sites (slightly lower performances in Lens).
- CTM: better results with set of 14 sources (OPT) than with 8 sources (MDT)
- CTM: mass closure with a tendency to underestimate when compared to gravimetric PM10
- CTM: good performance when compared with RM reference for the overall dataset (z-score 75%), more difficulties with time series (target (1u) 30%)
- CTM: soil and exhaust sources with higher negative bias when compared with RM (overall average).
 Belis, Pernigotti, Pirovano FAIRMODE WG3

Preliminary conclusions of the IE

- The RM uniformation towards PMF5 (in part due to the good performances in previous IE) contributes to more homogeneous results.
- RM: Industry source needs better definition because too generic and risk of allocation of other combustion sources in there.
- CTM show quite homogeneous performances when using exactly the same input data.
- the comparison of CTM with RM reference points out a general underestimation of the single sources. Most critical situation for dust.
- Better perfomance for exhaust (as a whole) which is probably seen well by the two families of models. Good CTM scores with industry likely due to high uncertainty (tollerance) of the RM reference.
- Need to analyze the results more in detail.

Future work

- Detailed analysis of intercomparsion data; e.g. influence of seasons, size fraction, time resolution, specific compounds (EC, toxics etc...)
- Work towards studying geographical origin of pollution in addition to source categories (e.g. CTM vs RM+trajectories)
- Improved use of constrained analysis to improve the results in RM; e.g. force sensible factor profiles. More focus on data pre-treatment to remove noise.
- Work to include key tracers/species in EI to support the CTM performance (e.g. levoglucosan)?
- More focus on formation of organics (volatility, reactivity, degradation, precursors); dedicated IE including filter based and AMS/ACSM measurements?
- How to deal with dust, road dust sources in CTM
- Need to improve dialogue between CTM and RM communities
- Find what aspect of the IE outcome could be useful for other WGS.

Belis, Pernigotti, Pirovano FAIRMODE WG3

Thank you for your attention

Belis, Pernigotti, Pirovano FAIRMODE WG3

