





# FAIRMODE SPATIAL REPRESENTATIVENESS: **ANTWERP DATASET**

Bino Maiheu, Hans Hooyberghs, Wouter Lefebvre, Stijn Janssen





# **OVERVIEW**

- » Spatial representativeness
- » Data overview
- » Measurements
- » Emissions
- » Model chain
  - » Basic description
  - » Model input
- » Virtual stations
- » Summary







## SPATIAL REPRESENTATIVENESS EXERCISE

 Focus on representativeness of three measurement stations in the Antwerp Area

- » <u>Traffic site</u>
  - » Borgerhout II (street canyon location)
- » Urban background sites
  - » Antwerpen-Linkeroever
  - » Schoten





- » Measurements
  - » Telemetric stations (2012)
  - » Campaigns with passive samplers and mobile stations (2012)
- » Emissions
- » RIO-IFDM-OSPM modelresults
- » Various
  - » Population density (100m x 100m)
  - » Buildings
  - » Corine Land Use





» 26 telemetric stations, yearlong data (2012)

| Industrial                    | 16 |
|-------------------------------|----|
| Urban / Industrial            | 1  |
| Urban / Traffic               | 1  |
| Urban / Traffic street canyon | 1  |
| Urban background              | 6  |
| Urban background / Industrial | 1  |

- » Campaigns with passive samplers and mobile stations (2011 and 2012):
  - » NO<sub>2</sub> and PM
  - » 27 measurement periods of 14 days

| Urban Background | 2 |
|------------------|---|
| Street canyon    | 2 |
| Regional road    | 2 |



#### EMISSIONS

- » Gridded emission data on 1x1km<sup>2</sup>
  - » CO, NH<sub>3</sub>, NMVOS, NO<sub>x</sub>, PM<sub>10</sub>, PM<sub>2.5</sub>, So<sub>x</sub>
  - » SNAP-sectors
- » Line sources for traffic emissions
  - » Note that these emissions are also included in the 1x1km<sup>2</sup> gridded emissions, this file denotes how these emissions are spread across the roads in the grid cells
- » Point sources
  - Annual total point source emissions for 2010 reported by the Belgian government in the scope of the CLRTAP-agreement (The 1979 Geneva Convention on Longrange Transboundary Air Pollution).
  - » Since the point source data included in the 1x1km<sup>2</sup> gridded emissions differ slightly form the point source data in this file, one must take care in combining both datasets and apply a suited double counting procedure

| Snap<br>sector | Sector Description                                         |
|----------------|------------------------------------------------------------|
| 1              | Combustion in energy production and transformation         |
| 2              | Non-industrial combustion plants                           |
| 3              | Combustion in manufacturing industry                       |
| 4              | Production processes                                       |
| 5              | Extraction and distribution of fossil fuels and geothermal |
|                | energy                                                     |
| 6              | Solvent use and other product use                          |
| 7              | Road transport                                             |
| 8              | Other mobile sources and machinery                         |
| 9              | Waste treatment and disposal                               |
| 10             | Agriculture                                                |





## **POINT SOURCES**

#### Comparison of data sets

» Total emissions in domain

| Ton/year             | NOx   | PM <sub>10</sub> | PM <sub>2.5</sub> |
|----------------------|-------|------------------|-------------------|
| Local dataset (2012) | 12488 | 425              | 219               |
| CLRTAP (2010)        | 12589 | 0                | 0                 |
| E-PRTR (2012)        | 11422 | 106              | 0                 |

Note: According to our local dataset, only 8% of the  $PM_{10}$ -emissions are emitted at point sources.

» Height of emissions

| Height category     | Local dataset | CLRTAP |
|---------------------|---------------|--------|
| 1 (h > 45m)         | 6125          | 6100   |
| 2 (45m < h < 100m)  | 5530          | 4590   |
| 3 (100m < h < 150m) | 700           | 135    |
| 4 + 5 (h > 200m)    | 60            | 0      |
| Unknown             |               | 1765   |

- » Additional constraints:
  - » No height of stacks in E-PRTR
  - » No heat content in E-PRTR and CLRTAP
  - » Coordinates in local dataset are confidential





#### Description

- » Model chain: RIO-IFDM-OSPM
- » Year: 2012
- » Pollutants: NO<sub>2</sub>, BC, PM<sub>2.5</sub>, PM<sub>10</sub>, C<sub>6</sub>H<sub>6</sub>, O<sub>3</sub>

#### » Results

- » Gridded annual mean concentrations
- » Time series for 341 (virtual) stations





## MODEL RESULTS



# OVERVIEW I



Data source: http://www.atmosys.eu



Modelling UFP concentrations in Antwerp.

Hans Hooyberghs et al.

# OVERVIEW II

## **RIO-IFDM**

### **RIO-IFDM-OSPM**





# VALIDATION

- » Model chain has been validated in many campaigns
  - » City wide validation for Antwerp (NO<sub>2</sub>)
  - » Gradient validation close to highway (NO<sub>2</sub>)
  - » 5 chemKar campaigns for particulate matter (PM)



+

AF06 (146)

- » Underestimation of PM concentrations in street canyons (related to multiple resuspension)
- » No street canyon results for ozone (only rooftop concentrations)
- Due to the lack of benzene measuring stations, there is no RIO-background concentration. Hence, the benzene maps only show the local contribution of traffic and industrial point sources. Measurements at the Borgerhout measuring station indicate that the annual mean background concentration is approximately 0.7 µg/m<sup>3</sup>.
- The point source dataset used in the modelling exercise and the one provided in the emission data differ slightly. Due to confidentiality agreements, VITO is not allowed to disclose its (high resolution) dataset, but the emissions of this dataset are included in the 1x1km<sup>2</sup> gridded emissions. A comparison between the CLRTAP dataset and the (confidential) local point source data is provided in the appendix of the report.



### VIRTUAL MONITORING STATIONS

- » Categories:
  - » ATMOSYS campaign locations (6)
  - » Telemetric stations (26)
  - » Randomly chosen locations (117)
  - » Randomly chosen street canyon locations (47)
  - Randomly chosen tunnel exit locations
    (4) [white]
  - Non-street canyon locations on concentric circles around Borgerhout stations (33)
  - Street canyon locations on concentric circles around Borgerhout stations (14)
  - » Virtual gradient measurement at three locations (30)
- » Total: 341 stations (100 in street canyon)







# Questions?

**EXTRA SLIDES** 



## **REGIONAL MODELLING: RIO**

» Modelling technique based upon measurements



| <u>41B004</u> | Brussel (Sint-Katelijne)   | Bxl | 59 | 7:00  | 13:00 |
|---------------|----------------------------|-----|----|-------|-------|
| 41B006        | Brussel (EU Parlement)     | Bxl | 62 | 3:00  | 12:00 |
| 41B008        | Brussel (Belliardstraat)   | Bxl | 75 | 11:00 | 13:00 |
| <u>41B011</u> | Sint-Agatha-Berchem        | Bxl | 56 | 1:00  | 13:00 |
| 41MEU1        | Neder-Over-Heembeek        | Bxl |    |       | 6:30  |
| 41N043        | Voorhaven (Haren)          | Bxl | 61 | 7:00  | 13:00 |
| 41R001        | Sint-Jans-Molenbeek        | Bxl | 69 | 7:00  | 13:00 |
| 41R002        | Elsene                     | Bxl | 59 | 3:00  | 13:00 |
| 41R012        | Ukkel                      | Bxl | 43 | 3:00  | 13:00 |
| <u>41WOL1</u> | Sint-Lambrechts-Woluwe     | Bxl | 53 | 7:00  | 13:00 |
| 4.70E+14      | Vorst                      | Bxl | 53 | 2:00  | 11:00 |
| <u>44M705</u> | Roeselare (Haven)          | Vla | 41 | 8:00  | 10:30 |
| 44N012        | Moerkerke                  | Vla | 28 | 11:00 | 13:00 |
| 44N029        | Houtem (Veurne)            | Vla | 18 | 3:00  | 13:00 |
| 44N052        | Zwevegem                   | Vla | 52 | 11:00 | 13:00 |
| <u>47E714</u> | Dudzele                    | Vla | 26 | 10:00 | 13:00 |
| 47E715        | Zuienkerke                 | Vla | 29 | 3:00  | 13:00 |
| <u>42R821</u> | Beveren Waas               | Vla | 54 | 7:00  | 13:00 |
| <u>42R830</u> | Doel (Scheldemolenstraat)  | Vla | 51 | 4:00  | 13:00 |
| <u>42R892</u> | Kallo (sluis Kallo)        | Vla | 61 | 1:00  | 13:00 |
| <u>44M702</u> | Ertvelde                   | Vla | 46 | 5:00  | 13:00 |
| <u>44N051</u> | ldegem                     | Vla | 49 | 9:00  | 13:00 |
| 44R701        | Gent                       | Vla | 50 | 6:00  | 13:00 |
| 44R702        | Gent (Gustaaf Callierlaan) | Vla | 56 | 6:00  | 13:00 |
| 44R710        | Destelbergen               | Vla | 49 | 6:00  | 13:00 |
| 44R721        | Wondelgem                  | Vla | 51 | 11:00 | 13:00 |
| 44R731        | Evergem                    | Vla | 46 | 8:00  | 13:00 |
| <u>44R740</u> | Sint-Kruiswinkel           | Vla | 56 | 5:00  | 13:00 |
| 44R750        | Zelzate                    | Vla | 49 | 4:00  | 13:00 |
| <u>47E703</u> | Oost-Eeklo                 | Vla | 43 | 8:00  | 13:00 |
| <u>47E704</u> | Wachtebeke                 | Vla | 47 | 4:00  | 13:00 |
| <u>47E716</u> | Mariakerke                 | Vla | 48 | 9:00  | 13:00 |
| <u>40AL01</u> | Antwerpen-Linkeroever      | Vla | 60 | 1:00  | 13:00 |
| <u>40HB23</u> | Hoboken                    | Vla | 65 | 1:00  | 13:00 |
| 40LD01        | Laakdal                    | Vla | 45 | 13:00 | 13:00 |
| 40LD02        | Geel                       | Vla | 23 | 1:00  | 13:00 |
| 40R833        | Stabroek                   | Vla | 46 | 2:00  | 13:00 |
| 42M802        | Antwerpen (Luchtbal)       | Vla | 61 | 2:00  | 13:00 |
| 42N016        | Dessel                     | Vla | 36 | 1:00  | 13:00 |
| 42R801        | Borgerhout                 | Vla | 66 | 1:00  | 13:00 |



#### **RIO METHODOLOGY**

- » Main question: How to make reliable maps based upon the measurements ?
  - » Higher values in urban areas
  - » Lower values in rural areas
  - » Simple interpolation is insufficient
- » Solution: use of Corine land use data
- » Steps
  - Detrending: removal of land use bias in measurements Result: "homogeneous" concentrations at measurements stations
  - » Interpolation Result: "homogeneous" map of concentrations
  - » Retrending: re-adding the land use bias Result: concentration map

Fairmode intercompa



Annual mean NO2 concentrations (Belgium, 2012)







**OSPM** Street-canyon module



- » Plume model
- Gaussian dispersion, taking into account the stability of the atmosphere using stability classes (based on meteorological input)
- » Receptor model



» For simplicity: asymmetry of street canyon is neglected

Lefebvre, W. et al. (2011), Atm. Env., 45, p. 6705-6713

Berkowicz, R. (2000), Environmental Monitoring and Assessment, 65, pp. 323-331.

## PROCEDURE TO AVOID DOUBLE COUTING





#### Urban scale validation campaign





Lefebvre, W. et al. (2013), Atm. Env., 77, p. 325-337

#### Highway measurement campaign









#### Highway campaign, spatial validation





#### Highway campaign, temporal validation



NO2, weekly



BC, daily

