

National Institute for Public Health and the Environment Ministry of Health, Welfare and Sport

Model validation in the Netherlands and the MQO

Joost Wesseling, Lan Nguyen

Content

- Introduction
- Model validation in the Netherlands
 - Indicators
 - Results NO₂, PM_{10} , $PM_{2.5}$
- Applying the FAIRMODE MQO
- Questions?

Introduction

- From time to time there are discussions in The Netherlands about the quality of the Dutch models for determining air quality and perform compliance testing.
 - Most discussions concern NO₂ near roads.
 - It is important that the models yield –on average– the correct concentrations.
 - The uncertainty of model calculations is relevant.
- Recently, uncertainty became very important as in several cases the speed limit on highways was increased while the NO₂ concentrations were already close to the limit value.

Model validation

- In 2007, 2011, 2013 and 2014 the RIVM has conducted (limited) validation tests of the Dutch Standard Calculation Methods for air quality.
- In 2015 the derogation for complying with the NO₂ limit value in the Netherlands expired.
- Several municipalities, provinces and also action groups have performed (their own) measurements.
- So, ... how good are the model results?

Model validation 2016

- RIVM received NO₂ measurement results (Palmes tubes, calibrated using reference measurements) from 16 municipalities, provinces and environmental groups.
- Data covers 2010 2015.
- Measurements concentrated in cities with relatively poor air quality.

Model validation 2016

- For all measurement locations air quality calculations were performed using the Dutch standard models and the street/traffic data provided in the framework of the Dutch "National Cooperation on Air Quality".
- Roughly 1950 usable data points for NO₂.
- For NO_x and PM_{10} some 190 measurements using official reference stations, for $PM_{2.5}$ some 100 measurements.
- Analyses of the total data set, for each individual year and also all datasets separately.

Dutch Model validation 2013 / 2016

- Determine model quality:
 - Orthogonal fit of straight line \rightarrow direction and offset;
 - Distribution of residues, both orthogonal and directly;
 - Bland-Altman plot;
 - Standard deviation;
 - BIAS, RMS parameters;
 - Confidence and Prediction intervals;
 - EU criteria 30% and 50%;
 - Previous checks: QQ, Bootstrap methods.
 - Extra: FAIRMODE MQO ...

Analysis of NO₂

Standard analysis

			_
Direction/BI	1.01	0.03	
Offset/BI	0.8	0.8	
NrPoints	1952		-
F(20) / CI	21.0	0.3	
F(30) / CI	31.2	0.2	
F(40) / CI	41.3	0.3	
F(50) / CI	51.5	0.5	
Diff >30%	6.6%	128	
RMSE/R ²	4.6	0.68	
BIAS	1.19		-
MNB/ANB	0.05	0.04	
>40.5	163	230	

MQO FAIRMODE

(May 2016)

8.2.3. A MQO for yearly average model results

For air quality models that provide yearly averaged pollutant concentrations, the MQO is modified into a criterion in which the mean bias between modelled and measured concentrations is normalized by the expanded uncertainty of the mean concentration:

$$MQI = \frac{|\overline{O} - \overline{M}|}{\beta U_{95}(\overline{O})} \quad and \ MQO: MQI \le 1$$
(15)

For this case, Pernigotti et al (2013) derive the following expression for the 95th percentile uncertainty:

$$U_{95}(\overline{O}) = U_{95,r}^{RV} \sqrt{\frac{(1-\alpha^2)}{N_p^*}(\overline{O}^2 + \sigma_0^2) + \frac{\alpha^2 \cdot RV^2}{N_{np}}} \cong U_{95,r}^{RV} \sqrt{\frac{(1-\alpha^2)}{N_p}\overline{O}^2 + \frac{\alpha^2 \cdot RV^2}{N_{np}}}$$
(16)

β	U ^{RV} 95,r	RV	α	N _p	N _{np}
2.00	0.25	200 µg/m3	0.20	5.2	5.5
2.00	0.18	120 µg/m3	0.79	11	3
2.00	0.28	50 µg/m3	0.13	30	0.25
2.00	0.36	25 μg/m3	0.30	30	0.25
	β 2.00 2.00 2.00 2.00	β U ^{RV} _{95,r} 2.00 0.25 2.00 0.18 2.00 0.28 2.00 0.36	β U ^{RV} _{95,r} RV 2.00 0.25 200 μg/m3 2.00 0.18 120 μg/m3 2.00 0.28 50 μg/m3 2.00 0.36 25 μg/m3	β U ^{RV} _{95,r} RV α 2.00 0.25 200 μg/m3 0.20 2.00 0.18 120 μg/m3 0.79 2.00 0.28 50 μg/m3 0.13 2.00 0.36 25 μg/m3 0.30	β U ^{RV} _{95,r} RV α N _p 2.00 0.25 200 μg/m3 0.20 5.2 2.00 0.18 120 μg/m3 0.79 11 2.00 0.28 50 μg/m3 0.13 30 2.00 0.36 25 μg/m3 0.30 30

 $\beta = \begin{cases} 2 & : \text{Interpretation EU directive.} \\ \sqrt{2} & : \text{Uncertainties model and} \\ \text{measurement equal.} \end{cases}$

Measurement uncertainty ...

- Of the 1950 data points, some 200 are measured using reference equipment, all the others are measured using Palmes tubes.
- Palmes tubes calibrated using official measurements.
- Estimated uncertainty of Palmes tubes roughly 17-18% (95%CI).
- The uncertainty of the Palmes tubes should be used in the model assessment.

Analysis of PM₁₀ and PM_{2.5}

- Until recently, the uncertainty derived for reference measuremens was used in FAIRMODE model evaluation for PM₁₀.
- In the Netherlands most PM₁₀ measurements are performed using beta-ray methods (mostly FH 62 I-R/I-N, later BAM) that have been shown to be equivalent.
- A parameterization of uncertainties of beta-ray measurements as a function of yearly average concentration level was provided by RIVM.
- Both the U0 based on reference as well as equivalent methods have been used in the analysis.

Analysis of PM_{10}

100% of data complies with EU directive

Analysis of PM_{10}

100% of data complies with EU directive

FAIRMODE:

 $\frac{\text{Red curves}}{\text{Reference uncertainty}}$ $\beta = 2$ 88% of data complies

Green curves Equivalent uncertainty $\beta = \sqrt{2}$ 96% of data complies

Analysis of PM_{2.5}

98% of data complies with EU directive

Analysis of PM_{2.5}

98% of data complies with EU directive

FAIRMODE:

 $\frac{\text{Red curves}}{\text{Reference uncertainty}}$ $\beta = 2$ 96% of data complies

 $\frac{\text{Green curves}}{\text{Equivalent uncertainty}}$ $\beta = \sqrt{2}$ 100% of data complies

Conclusions

- Results of the Dutch standard methods for calculating air quality were compared to measured NO_x , NO_2 , PM_{10} and $PM_{2.5}$ concentrations.
- Overall, a satisfactory agreement was observed.
- In applying the FAIRMODE definition(s) for a MQO several choices are possible regarding the measurement uncertainty and the interpretation of the EU directive.

QUESTIONS ANYONE?

Model validation in the Netherlands and the MQO | June 2016