

FAIRMODE Recommendations WG3/WG4

&

Pilot Exercise

February 2019

Joint Research Centre

- On the use of benchmarking tools: FAIRMODE recommends applying proven methodologies to ensure fit-for-purpose and reliable quality when performing source apportionment and air quality planning applications.
- On the nomenclature for classifying emission sources: Following the recommendations from emissions, FAIRMODE recommends adopting the nomenclature used under the NEC Directive for reporting emissions as basis for the source apportionment activities under the AAQ Directive.
 - On the use and limitations of source apportionment methods: For the specific purpose of providing information of direct relevance to support the design of air quality plans and assess their potential benefits:
 - □ The incremental approach is not recommended for air quality planning;
 - Methods based on mass-transfer precursor mass-ratios are suited for linear pollutants but not for non-linear pollutants;
 - Emission reduction potential (i.e. brute force) based approaches are recommended for air quality planning applications

Then we may have an is ue!

	Pollutant	Increment	Mass- transfer	Model scenarios	Type of model
Emilia Romagna	NO2, PM10	Х		Х	Eulerian
Hessen State	NO2, PM	Х		Х	Eulerian
Stockholm	NO2, PM10	Х	Х	Х	Gaussian
Malopolska	NO2, PM10, PM2.5, BaP,			Х	Eulerian
Helsinki	NO2, PM10, PM2.5, BaP	Х		Х	Gaussian
Athens	NOx, O3, PM10, PM2.5			Х	Eulerian
Slovenia	NO2, PM10		Х	Х	Eulerian
Italy (Enea)	NO2, PM10, PM2.5, O3		Х	Х	Eulerian
Dublin	NO2, PM10, PM2.5, OZONE, BaP			Х	Gaussian
Sofia	PM2.5, PM10	X		Х	Gaussian

Centre

Urban impact & graat increment

Research Centre

Urban impact & graat increment

cf

Urban impact & grian increment

Comparison of the urban increm large city sizes (FUA)

Research

ment and urban impact for

1.00 0.80 0.60 0.40 0.20 0.00 0.7 14 21 28 35 42 49 56 63 70 77 84 91 98 105 112 Distance from city center (km)

Observations based in creme Which stations pair to choos

i KS :

Hybrid approaches: Regional → incre

Hybrid approaches: Regional → incr

European Commission

Joint Research Centre

Issues / questions

- > How do you cope with the incremental variability?
- How do you assess the validity of neglecting the local production of secondary?
- > How do you correct for missing emission sources / contributions?
- Is there an interest of comparing your different "hybrid local approaches" on a common dataset?

