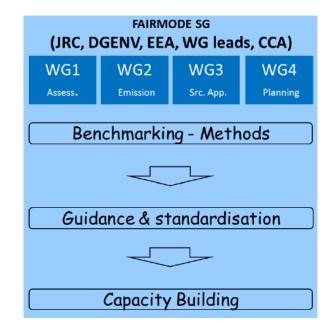
Development of technical Guides on source apportionment with Receptor and Source oriented and Models

European Guide on Air Pollution Source Apportionment (SA) for estimating Particulate Matter (PM) source contributions with Source oriented Models (SMs) and combined use of SMs and Receptor Models (RMs)

Mihaela Mircea, Giuseppe Calori, Guido Pirovano, Claudio Belis,


FAIRMODE ROAD MAP 2017-2019

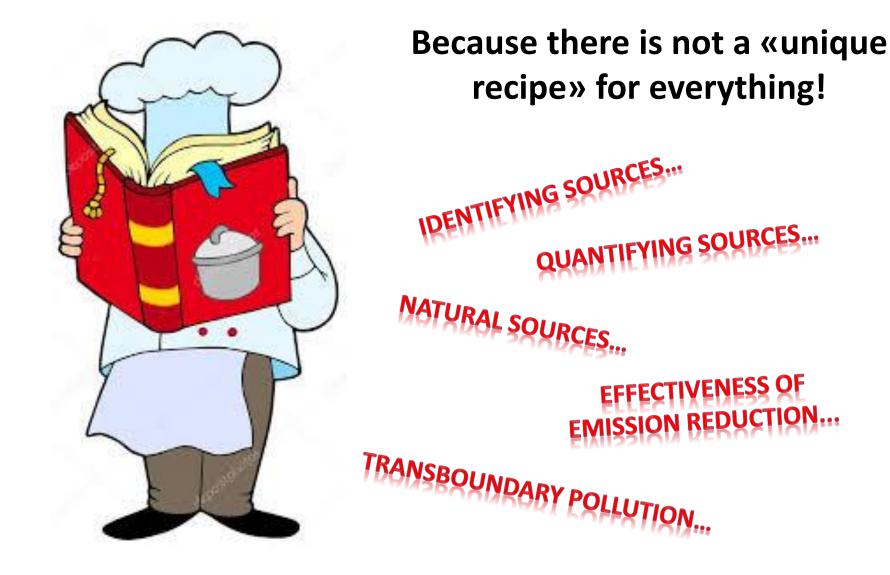
The future activities of the WG3 will focus on the following aspects:

-Develop comprehensive guidelines for RM and CTM approaches on the basis on the inter-comparison exercise and other scientific evidence.

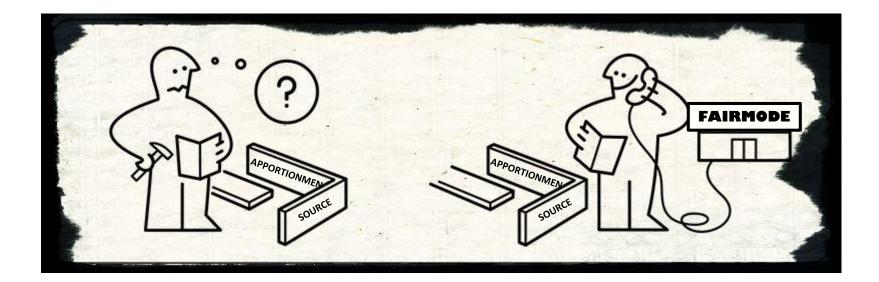
-Promote the integration between RM and CTM in order to take advantages of the strengths of both approaches.

- Develop methodologies to support the evaluation o CTM models, with a particular focus on spatial issues.
- Support to the e-Reporting process (built-in SHERPA report facility)
- Support pilot regions/cities in their source-apportionment estimates (first stage of an air quality plan)
- Perform training activities to disseminate harmonized best practices
- Interact with CEN to take advantage of synergies and contribute to standardization

Scope and aims


In the beginning there was the Law...

The AQD states and demand:


....to *identify* and *quantify* the *contributions* from main pollution sources with the purpose to provide understanding on what *measures* should be taken to address them.

....to identify the main **causes** that determine concentrations to raise above the AQD limit values (e.g. because of sitespecific dispersion characteristics, adverse climatic conditions or transboundary contributions,...)

...to provide information on **concentrations** and **sources** and the evidence demonstrating that the exceedances are attributable to **natural sources**. Why using receptor models (RMs) and source oriented models (SMs) for SA?

What are we selling you?

This is a (draft) «Instructions manual» that gives you some advices on...

«HOW TO IMPLEMENT A SOURCE APPORTIONMENT METHOD»

What we are NOT selling you!

This document can help you

«TO ASSEMBLE THE WARDROBE»

«BUT NOT TO DECIDE WHERE TO PLACE IT»

1. Introduction

- 2. Estimation of source contributions with SM approaches
- 3. Combined use of SMs and RMs
- 4. Intercomparison between SMs and between SMs and RMs

References

Appendix 1: Applications of SMs and SMs-RMs for estimating particulate matter source contributions in Europe

Introduction

- 1.1 Scope and aims
- 1.2 Target audience
- 1.3 Why using receptor models (RMs) and source oriented models (SMs) for SA
- 1.4 Techniques for SA using RMs
- 1.5 Source oriented air quality models

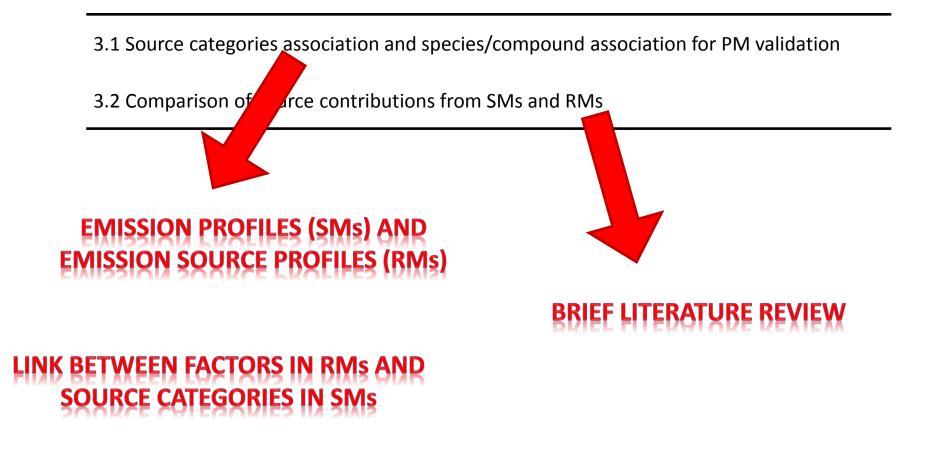
1.6 SM approaches for SA

1.7 European SA studies with

and with SMs-RMs: survey results

TAGGING METHODS

SENSITIVITY ANALYSIS (EMISSION REDUCTION POTENTIAL)


Estimation of source contributions with SM approaches

- 2.1 Modelling and validation of PM base case of SM approaches
- 2.2 Sensitivity analysis methods
- 2.3 Tagged species methods

SHORT RECAP OF MAIN STEPS IN MODELLING SETUP

SOME PRACTICAL HINTS ON SENSITIVITY AND TAGGING METHODS

Combined use of SMs and RMs

Outlook

LOCAL SCALE MODELS

ORGANIC AEROSOL

SOURCE APPORTIONMENT & PLANNING

NATURAL SOURCES?

"VALIDATION" OF SA RESULTS? MERGING OF RM AND SM? European Guide on Air Pollution Source Apportionment with Receptor Models REVISION 2019

REVISION COMMITTEE

Olivier Favez (editor), Claudio A. Belis (chair and co-editor), Mihaela Mircea, Evangelia Diapouli, Manousos-Ioannis Manousakas, Stergios Vratolis, Stefania Gilardoni, Marco Paglione, Stefano Decesari, Grisa Mocnik, Dennis Mooibroek, Pedro Salvador, Satoshi Takahama

INERIS, JRC, ENEA, NCSR-DEMOKRITOS, CNR-ISAC, Josef Stefan Institute (JSI), TNO, CIEMAT

in collaboration with

maîtriser le risque pour un développement durable

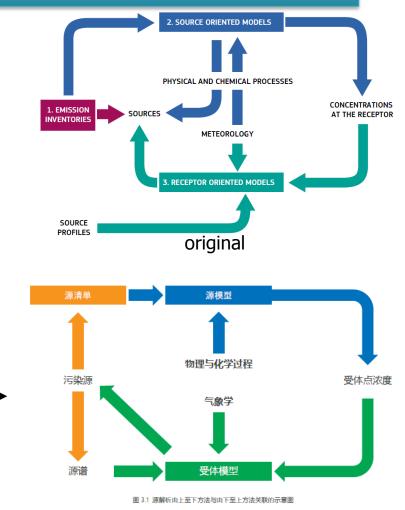
Current version (2014)

	PART A: INTRODUCTION TO SOURCE APPORTIONMENT WITH RECEPTOR MODELS				
	PAR	T B: HARMONISED RECEPTOR MODEL PROTOCOL	21		
R T S	B1.	PRELIMINARY EVALUATION OF THE STUDY AREA	21		
	B2.	DEFINING A METHODOLOGICAL FRAMEWORK	23		
	B3.	EXPERIMENT DESIGN - CRITERIA FOR SITE AND SPECIES SELECTION			
		AND ESTIMATION OF MINIMUM NUMBER OF SAMPLES	25		
	B4.	DATA COLLECTION / FIELD WORK / CHEMICAL ANALYSIS	31		
	B5.	KNOWING YOUR DATASET: BASIC STATISTICS	35		
nato.	B6.	PRELIMINARY DATA QUALITY CHECKS	39		
	B7	INPUT DATA UNCERTAINTY CALCULATION	43		
arrison, tero, cchi,	B8	CHEMICAL MASS BALANCE MODELS	47		
Report Cal Ander IN	B9.	FACTOR ANALYSIS I: SELECTION OF THE NUMBER OF FACTORS AND DEALING			
		WITH ROTATIONAL AMBIGUITY (PMF)	51		
	B10	. FACTOR ANALYSIS II: EVALUATION OF SOURCE CONTRIBUTION ESTIMATION			
		AND MODEL PERFORMANCE INDICATORS	55		
	B11	. FACTOR ANALYSIS III: CRITERIA FOR FACTOR ASSIGNMENT	59		
	B12	. TESTS FOR MODEL PERFORMANCE VALIDATION	61		
	B13	. REPORTING RESULTS AND METHODOLOGY	65		
	PAR	PART C: ADVANCED MODELS			
	C1.	WIND AND TRAJECTORY ANALYSIS IN SOURCE APPORTIONMENT	67		
	C2.	THE USE OF PMF and ME-2 IN AEROSOL MASS SPECTROMETER DATA PROCESSING	71		
	СЗ.	THE AETHALOMETER MODEL	75		
	C4.	APPORTIONMENT OF THE PM CARBONACEOUS FRACTION: RADIOCARBON			
		AND TRACER ANALYSIS	79		
	C5.	CONSTRAINED AND EXPANDED MODELS IN FACTOR ANALYSIS	85		

Air Pollution Source Apportionment with Receptor Models

> A. Belis, Bo R. Larsen, Fubrio A Haddad, Olivier Favez, Roy M.)

Guide on RMs used world-wide!


- Cited 42 times in scientific literature
- Used in policy documents

Asian city air quality improvement Guide frame Guidance Area 2: Source List and Model Simulation

图片引自欧盟委员会, 2013.

Source parsing The top-down method is associated with the bottom-up method. Image taken from the European Commission

REVISED VERSION 2019

	INTRODUCTION TO SOURCE APPORTIONMENT WITH RECEPTOR MODELS	17
	1. PRELIMINARY EVALUATION OF THE STUDY AREA	28
	2. DEFINING A METHODOLOGICAL FRAMEWORK	32
	3. EXPERIMENT DESIGN - CRITERIA FOR SITE AND SPECIES SELECTION AND ESTIMATION OF MINIMUM NUMBER OF SAMPLES	34
	4. DATA COLLECTION / FIELD WORK / CHEMICAL ANALYSIS	43
	5. KNOWING YOUR DATASET: BASIC STATISTICS	49
	6. PRELIMINARY DATA QUALITY CHECKS	55
	7. INPUT DATA UNCERTAINTY CALCULATION	61
	8. CHEMICAL MASS BALANCE MODELS	65
	9. FACTOR ANALYSIS I: SELECTION OF THE NUMBER OF FACTORS AND DEALING WITH ROTATIONAL AMBIGUITY (PMF)	70
	10. FACTOR ANALYSIS II: EVALUATION OF SOURCE CONTRIBUTION ESTIMATION AND MODEL PERFORMANCE INDICATORS	76
	11. FACTOR ANALYSIS III: CRITERIA FOR FACTOR ASSIGNMENT	81
\implies	12. FACTOR ANALYSIS IV: CONSTRAINED AND EXPANDED MODELS	83
\Rightarrow	13. FACTOR ANALYSIS V: DATA PROCESSING OF IN SITU THERMO-DESORPTION ELECTRON IMPACT AEROSOL MASS SPECTROMETRY	89
	14. AETHALOMETER MODELS	101
	15. RADIOCARBON AND TRACER ANALYSIS FOR THE APPORTIONMENT OF THE PM CARBONACEOUS FRACTION	109
	16. PROTON-NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY FOR THE SOURCE APPORTIONMENT OF WATER SOLUBLE ORGANIC CARBON	116
	17. SOURCE APPORTIONMENT BY FOURRIER-TRANSFORM INFRARED (FTIR) ANALYSIS	121
	18. WIND AND TRAJECTORY ANALYSIS IN SOURCE APPORTIONMENT	128
,	19. TESTS FOR MODEL PERFORMANCE VALIDATION	156
	20. REPORTING RESULTS AND METHODOLOGY	168

MAIN CHANGES

	VERSION 2014	VERSION 2019
PAGES	88	174
SECTIONS	3 - Introduction - Harmonised protocol - Advanced methods	No sections The advanced methods are now common practice
CHAPTERS	18	20
		6 chapters about advanced methods were thorougly revised and reordered
		2 new chapters:
		Proton nuclear magnetic resonance and
		fourrier transformed infrarred (FTIR) techniques

OPEN REVIEW

The drafts can be downloaded here:

http://source-apportionment.jrc.ec.europa.eu/downloads.aspx

The drafts are now open for comments mainly by the WG3 experts until end of February (remarks from all experts are welcome)

Considering the novelty and cross-cutting nature of the topic, the draft guide (handbook) on SM will be then open for comments from all FAIRMODE experts for a longer time and the final draft will be discussed in the next Fairmode technical meeting

