

26-28 June 2018 Source apportionment with a hybrid modelling system: application to the Milan metropolitan area

N. Pepe, G. Pirovano, A. Balzarini, G.M. Riva, A. Toppetti, G. Lonati

Goals and contents

Developing and applying a hybrid modelling system to reconstruct air quality and source contributions in an urban area

- 1. Hybrid Modelling System (HMS) and Case study
- 2. Source apportionment
- 3. Evaluation of obtained results
- 4. Conclusions

Pepe et al., Atmospheric Environment 141 (2016) 297-311 Ricerca sul Sistema Energetico - RSE S.p.A.

Ricerca sul Sistema Energetico - RSE S.p.A.

Modelling system and case study

Pepe et al., Atmospheric Environment 141 (2016) 297-311

Meteorological fields

WRF v.3.4.1 – 4 domains **Europe** (45 km) + **Italy** (15 km) **Po Valley (POV)** (5 km) + **Milan urban area (MIL)** (1.7 km) ECMWF – Analysis fields

Emissions

-1500-

-2000-

-2000

-1500

-1000

-500

500

1000

Regional inventories for Lombardia, Piemonte, Veneto and Emilia Romagna ISPRA and EMEP 2010 for other areas

Period: year 2010

Inergetico

Ricerca sul Sistema Energetico - RSE S.p.A.

Guido Pirovano

SP10

Emission regions «tagging»

Emission categories

01 ELE	Electrical power plants
01 OTH	Other power plants
02 BIO	Biomass burning for residential and commercial heating
02 OTH	Other residential and commercial heating
07 AUT	Road transport – Private cars
07 LEG	Road transport – Light duty vehicles
07 PES	Road transport – Heavy duty vehicles
07 MOT	Road transport – two wheels
11 NAT	Natural sources
EMEP	Transboundary sources
OTHER	Other sources: Industry, Agriculture, solvents, off-road transport
	01 ELE 01 OTH 02 BIO 02 OTH 07 AUT 07 LEG 07 PES 07 MOT 11 NAT EMEP OTHER

Ricerca sul Sistema Energetico - RSE S.p.A.

CAMx - Po valley

PM_{2.5} – Annual mean – geographical source apportionment

HMS - Receptor analyis - PM_{2.5}

Ricerca sul Sistema Energetico - RSE S.p.A.

Ricerca sul Sistema Energetico - RSE S.p.A.

Yearly mean

Ricerca sul Sistema Energetico - RSE S.p.A.

CAMx vs AIRUSE (qualitative comparison)

	AIRUSE+ (2013)		This work (2010)	
Sources	Concentration	0/	Concentration	0/
	(µg/m3)	/0	(µg/m3)	70
Vehicle Exahust (VEX)	1.8	6 %	3.6	19 %
Vehicle non-exhaust (NEX)	2.5	8 %		
Biomass burning (BB)	5.1	17 %	4.3	23 %
Salt (SEA)	0.4	1 %	0.2	1%
Industrial (IND)	1.4	5 %	not tracked	
Mineral (MIN)	1.5	5%	not tracked	
Secondary nitrate (SNI)	8.9	30%	0 7	46 %
Secondary sulfate (SSO)	5.6	19%	0.7	
Not apportioned	2.6	9 %	-	
Total	29.8		18.7	

Pepe et al, 2018. Atmospheric Environment (submitted)

Particulate Matter is a multiscale and multisource problem

Road Transport, Biomass Burning and Agriculture are the main sources of Particulate Matter

The **local context** can introduce detectable **spatial variability** in the spatial concentration pattern but providing a **minor** contribute to the total concentration

HMS reproduces with reasonable results both primary, secondary PM and precursors

The comparison with AIRUSE results provided a qualitative evaluation of HMS results for PM_{2.5}

Further developments of HMS (on-line treatment of line sources)

Better harmonization of bottom up and top down approaches for emission reconstruction

Ricerca sul Sistema Energetico - RSE S.p.A.

THANKS FOR YOUR ATTENTION!

guido.pirovano@rse-web.it

