

TransfAIR

LIFE Emerald – Delivering Air Quality Forecasts & Mapping for Ireland

> FAIRMODE Technical Meeting 2022, Kjeller, Norway, Wednesday 19th October 2022.

Dermot Burke, Air Specialist, National Ambient Air Quality Unit, EPA Stijn Vranckx, Researcher, VITO

Summary

- EPA air quality monitoring overview
- LIFE Emerald & what it will deliver
- Application of FAIRMODE guidance on forecast model evaluation
 - Configuration of AQ Forecasting System in Ireland
 - Forecast model validation Belgium and Hauts-de-France
 - Validation of forecast bias correction techniques Belgium and Hauts-de-France

EPA air quality monitoring overview

Ambient Air Quality Monitoring in Ireland

- The EPA is the Competent Authority for implementation
 - Manages the national ambient monitoring network
 - National Reference Laboratory (NRL) for air quality
- Pollutants monitored for;
 - NO2 / NOx, SO2, PM2.5 / PM10, Ozone
 - Benzene, CO, PAH, Metals As, Ni, Pb, Cd, Hg

EPA air quality monitoring overview LIFE

- In 2017, the National Ambient Air Quality Monitoring Programme (NAAMP) was established and placed air quality monitoring on a statutory footing
- The NAAMP was a five year programme consisting of three main pillars:
 - **1.** A greatly expanded national monitoring network in three tiers
 - 2. Modelling and forecasting capability
 - 3. Citizen science and citizen engagement initiatives

EPA air quality monitoring overview

nto 🗡

LIFE Emerald - Main Objective

The main objective is to strengthen air quality management in Ireland to ensure effective implementation of the EU Ambient Air Quality Directives

Project Details

- LIFE19 GIE/IE/001101- LIFE Emerald
- Emissions ModEling and FoRecasting of Air in IreLanD
- Start: 01/01/21 End: 30/09/24
- Total: €1.6 million 52% of which is EC Co-funded
- Co-ordinating Beneficiary EPA
- Associated Beneficiaries ASI, DECC, HSE, UCC, VITO

LIFE

Project Stakeholders

What will LIFE EMERALD deliver?

- Provide a lot of answers to queries on the future of modelling in Ireland
- 3 day forecast for Ireland with high resolution in urban areas verified by DELTA forecasting tool
- Existing AQIH incorporated into Nowcast maps to provide more detailed information at a local level
- Production of annual historical maps both nationally and city level coupled with EU reporting mechanisms

LIFE

Air quality management dashboards for planning purposes

What will LIFE EMERALD deliver?

 Measurement campaigns to validate modelling chain

stations in Dublin / Rural town

Spatial representativeness study for

1 – 2 new LIFE funded air monitoring

 Outreach & dissemination to raise awareness

LIFE

DELTAPY DASHBOARD

× •

FC day

× 0

TransfAIR

model

Pol:PM10 Score:R2 agg:da day:0

Pollutant

Forecast target plot PM10 Thresh=40 fc=[0]

CRMSE/RMSEper

Cuvelier plot PM10 Thresh=30 fc=[0]

Week

Pol:PM10 Score:R2 agg:da fc: [0] type:all

Aggregation

da

× •

model ESM HR

× •

Forecast performance NO2 Thresh=43 fc=[2]

DELTAPY: dynamic features

Dynamic selection: pollutants; models, horizon; aggregation, flexible in data formats

How to draw conclusions?

TransfAIR

PM10 - MQI	Day0	PM ₁₀ - MQI	Day1
opaqpy_nn	0.62	ESM_AS	0.64
PREVAIR_AS	0.72	opaqpy_nn	0.64
ESM_AS	0.73	PREVAIR_AS	0.65
OVL	0.79	Chimere_pp	0.67
Chimere_pp	0.82	ESM_BR	0.68
ESM_BR	0.89	ESM_HR	0.75
ESM_HR	0.96	CAMS	0.85
CAMS	1.15	Chimere_raw	0.86
Chimere_raw	1.18	PREVAIR_BR	0.97
PREVAIR_BR	1.28	PREVAIR_HR	0.99
PREVAIR HR	1.32	OVL	1.07

Figure 1: Models ranked by MQI for PM₁₀, Left- day0 right- day1.

PM ₁₀ - % better	Day0	_	PM ₁₀ - % better	Day1
opaqpy_nn	100%		OVL	92%
OVL	77%		opaqpy_nn	90%
ESM_BR	46%		ESM_BR	65%
ESM_HR	42%		ESM_HR	62%
Chimere_pp	40%		PREVAIR_AS	54%
ESM_AS	35%		Chimere_pp	36%
PREVAIR_AS	23%		Chimere_raw	29%
Chimere_raw	14%		ESM_AS	0%
PREVAIR_HR	0%		PREVAIR_HR	0%
PREVAIR_BR	0%		PREVAIR_BR	0%
CAMS	0%		CAMS	0%

Figure 1: PM₁₀ Models ranked by percentage of stations outperforming the persistence model in terms of success ratio and probability of detection. Left- day0 right- day1

	Day0	Day1	Day2
Best Forecast model (MQI)	Opaqpy_nn	Opaqpy_nn	Opaqpy_nn
Best peak predictor (POD and SR)	OVL	OVL	OVL

PM₁₀ – Statistical forecast model config

Models

1120: *obs*_{8:-9},pm10, t2m, u10, v10, lcc, tp FFNN, OVL

1121: *obs*_{8:-9}, pm10 FFNN, OVL-1

1123: *obs*_{8:-9}, pm10, u10, v10 FFNN, OVL-3

1124: *obs*_{8:-9}, pm10, t2m FFNN, OVL-4

1125: *obs*_{8:-9}, t2m, u10, v10, lcc, tp FFNN, OVL-5

1126: *obs*_(8:-9), pm10, t2m, tp, lcc, t2m, globalradiation, r, 2d, pressure FFNN, OVL-6

1127: *obs*_{8:-9},pm10, t2m, u10, v10, mcc, tp FFNN, OVL-7

1130: *obs*_{8:-9},pm10 RNN, OVL-RNN

Data split

start_date_test: 2021-10-05 end_date_test: 2022-04-30 Start_date_training: 2021-10-05 Start_end_training: 2022-04-30 Start_date_validation: 2022-05-01 End_date_validation: 2022-06-30

Training Features

- 2d: 2m dew point temperature [K]
- cloudiness:
- globalradiation: [W / m^2]
- hcc: high cloud cover [%]
- **Icc:** low cloud cover [%]
- mcc: medium cloud cover [%]
- **no2**: cams no2 [μg/m3]
- **o3:** cams o3 [μg/m3]
- **pm10**: cams pm10 [μg/m3]
- pm25: cams pm25 [μg/m3]
- Pressure: [Pa]
- r: relative humidity [%]
- **t2m:** 2m temperature [K]
- tp: total precipitation [m]
- **u10:** 10 metre U wind component [m/s]
- v10: 10 metre V wind component [m/s]
- weekend:obs in weekend [µg/m3]

Meteo variables from Met Éireann

PM₁₀ model selection

models R2			RMSE			BIAS MQI						
	Day0	Day1	Day2	Day0	Day1	Day2	Day0	Day1	Day2	Day0	Day1	Day2
Pers.	0.56	0.28	0.18	4.29	5.79	6.60	0.06	0.43	0.05	1	1	1
CAMS	0.80	0.81	0.79	3.60	3.43	3.64	-0.98	-0.91	-0.97	0.84	0.59	0.55
OVL-1	0.83	0.69	0.67	3.16	3.96	4.10	0.52	0.51	0.61	0.74	0.68	0.61
OVL-2	0.90	0.61	0.79	3.58	4.19	4.41	1.19	2.44	2.48	0.84	0.72	0.66
OVL-3	0.89	0.80	0.79	3.48	4.33	4.51	2.48	2.39	2.19	0.82	0.74	0.67
OVL-4	0.85	0.79	0.70	3.10	3.80	3.92	2.19	0.04	0.3	0.73	0.65	0.58
OVL-5	0.78	0.73	0.16	3.62	5.43	5.66	0.80	1.75	1.49	0.85	0.94	0.86
OVL-6	0.79	0.26	0.64	3.62	4.43	4.39	1.49	0.51	0.25	0.84	0.76	0.65
OVL-7	0.83	0.65	0.67	3.20	4.01	4.11	0.25	0.88	0.61	0.75	0.78	0.61
OVL-RNN	0.80	0.61	0.62	3.37	4.50	4.57	0.58	1.16	1.19	0.83	0.80	0.68

() Near real time maps

Near real time

Animation

Air quality forecast

Dashboard

Map viewer

Historic maps

Forecast maps

Forecast Maps - Map viewer

Forecast Dashboard - Validation

Near real time

0	Near	real	time	maps
---	------	------	------	------

Animation

Air quality forecast

Forecast maps

Dashboard

Historic maps

Map viewer

Daily average Concentration - IE0137A - Horizon 0 - pm10 - µg/m3

Scatter plot - IE0137A - Horizon 0 - pm10 - µg/m3

Model assessment: summary report plot

Delta tool v7.0, FAIRMODE 3.3

- Performance Criteria satisfied
- Performance Criteria satisfied; Error dominated by corresponding Indicator
- TIME: >90% of stations fulfills the Performance Criteria SPACE: Dot fulfills the Performance Criteria
- TIME: <90% of stations fulfills the Performance Criteria SPACE: Dot does not fulfill the Performance Criteria

Performance	Criteria	satisfied
-------------	----------	-----------

- Performance Criteria satisfied; Error dominated by corresponding Indicator
- TIME: >90% of stations fulfills the Performance Criteria SPACE: Dot fulfills the Performance Criteria
- TIME: <90% of stations fulfills the Performance Criteria
- SPACE: Dot does not fulfill the Performance Criteria

CAMS

N.B PM₁₀ threshold set to 50 $\mu g/m^3$

Forecast POD/SR plot

N.B PM₁₀ threshold set to $15 \, \mu g/m^3$

Target plot: DELTA TOOL <-> DELTAPY

Questions

- Are the side outcomes (MPI diagram, POD & SR diagram on stations, summary report, Air Quality Index diagram) adequate to support the model evaluation, especially for experts?
- Does the current methodology look sufficiently complete? What (if any) important features are missing?
- Should the Air Quality index diagram be improved (with Multi-category Contingency Tables)?
- Can/should we plan an application of the methodology on European scale (e.g. on CAMS data)?

Questions?

The Overall Workflow

A.1. ATMOSYS System Specifications

CT3 Future Activities

4 Questions

- Are the side outcomes (MPI diagram, POD & SR diagram on stations, summary report, Air Quality Index diagram) adequate to support the model evaluation, especially for experts?
- Does the current methodology look sufficiently complete? What (if any) important features are missing?
- Should the Air Quality index diagram be improved (with Multi-category Contingency Tables)?
- Can/should we plan an application of the methodology on European scale (e.g. on CAMS data)?

Thank You!!

💹 JRC - Fair Mode

L, INTL 14/10/2022

10:26

ENG

 \times

European Commission Joint Research Centre Institute for Environment and Sustainability

Data selection Analysis Execute

_

 \times

 \mathbf{A}

.

European Commission Joint Research Centre

Data selection Analysis Execute

10:49

INTL 14/10/2022

ENG

 \times

Joint Research Centre

Data selection Analysis Execute

10:50

INTL 14/10/2022

ENG

 \times