

The FAIRMODE CT9 platform

Bertrand Bessagnet, Kees Cuvelier, Alexander de Meij, Alexandra Monteiro, Enrico Pisoni, Philippe Thunis, Angelos Violaris, Jonilda Kushta, Bruce R. Denby, Qing Mu, Eivind G. Wærsted, Marta García Vivanco, Mark R. Theobald, Victoria Gil, Ranjeet S Sokhi, Kester Momoh, Ummugulsum Alyuz, Rajasree VPM, Saurabh Kumar, Elissavet Bossioli, Georgia Methymaki, Darijo Brzoja, Velimir Milić, Arineh Cholakian, Romain Pennel, Sylvain Mailler, Laurent Menut, Gino Briganti, Mihaela Mircea, Claudia Flandorfer, Kathrin Baumann-Stanzer, Virginie Hutsemékers, Elke Trimpeneers

FAIRMODE CT9 OBJECTIVES

- For a given mitigation scenario (scen) and a base case (bc), models (M) provide different absolute results C^M_{scen}
- BUT, HOW DO THEY BEHAVE ON DELTAS?

 $\Delta = C_{scen}^M - C_{bc}^M$

- What is the order of magnitude of differences? How to evaluate these differences? Which indicators?
- Can we explain the differences, what are the main drivers?

FAIRMODE CT9 CONTEXT TOPIC 2

- Many inter-comparison exercises of air quality models
- No recent exercises to assess the capacity of models to simulate "delta" (Formerly CityDelta, EURODELTA) particularly at more local scale
- Need to have a long term inter-comparison <u>platform</u> to continually assess model responses

FAIRMODE CT9 CONTEXT TOPIC 2

delta

- Many inter-comparison exercises of air quality models
- No recent exercises to assess the capacity of models to simulate "delta" (Formerly CityDelta, EURODELTA) particularly at more local scale
- Need to have a long term inter-comparison <u>platform</u> to continually assess model responses

- A Model Concentration Delta can be applied to an observation C_{obs} to evaluate a scenarios based on 'bc' reference and 'scen' simulations:
 - Absolute (for O3?): $C_{scen} = C_{obs} + \overline{(C_{scen}^M C_{bc}^M)}$
 - Relative (for NO2 or PM?): $C_{scen} = C_{obs} \times (C_{scen}^{M} C_{bc}^{M})/C_{bc}^{M}$
 - Techniques often used but rarely assessed

Models and teams involved - Overview

Constraints:

-Meteorology 2015

-Emission reductions 25 and 50%

-Target domains, periods (episodes)

Team name	- Country	Model Name
JRC	(EU)	EMEP
ZAMG	(AT)	WRF-Chem
Met Norway	(NO)	EMEP
Met Norway	(NO)	EMEP + uEMEP
Cyl	(CY)	WRF-Chem
NKUA	(GR)	WRF-Chem
DHMZ	(HR)	ADMS-Urban
DHMZ	(HR)	LOTOS-EUROS
LMD/IPSL	(FR)	WRF-CHIMEREv2020r1
UH-CACP	(UK)	WRF-CMAQ
CIEMAT	(ES)	IFS-CHIMEREv2017r4
ENEA	(IT)	WRF-MINNI
IRCELINE	(BE)	CHIMERE + RIO + ATMOSTREET

The overall framework

Set-up

- Short term (ST) on episodes
 - Emissions reduced only during 2015 episodes

from 00:00 to 23:00

- Long term (LT) simulations
 - Emissions reduced for the whole year 2015
- Two reductions so far:
 - 25% and 50% from a base case (BC)
- Reduced species depends on target pollutants
 - PM10: PPM, NOx, VOC, NH3, SO2, ALL (All together)
 - Ozone: NOx, VOC, ALL (All together)

The overall framework

Basis Indicators

> Absolute Potential defined as the reduction in μ g/m³ scaled by the reduction α of the scenario (25 or 50%) of a precursor from base case BC

• $APl = (C_{SCEN} - C_{BC})/(\alpha)$ ($APl \times \alpha$ is the delta of concentrations)

> Relative Potential defined as the reduction in % scaled by the reduction α of the scenario (25 or 50%) of precursor *n* from base case BC and by the BC concentrations.

• $RPl = (C_{SCEN} - C_{BC})/(\alpha \times C_{BC})$

Absolute Potency in µg/m³/(ton/day) defined as the derivative of the concentration with respect to the emissions density E of a precursor or in other words the rate with which the concentrations (*C*) will change as a result of an emission density E)

•
$$APy = (C_{SCEN} - C_{BC})/(\alpha \times E_{BC})$$

Absolute Potential for O3 for NOx reduction AbsPOTENTIAL50% Mean O3

NOX reduction (ST)

Absolute Potential for PM10 with ALL pollutant reductions

- > Variability for each indicator
 - IND = API, RPI, APY

Variability from models M assessed by Norm. Std. Dev.

$$VAR_{IND} = \sqrt{\frac{\sum_{m=1}^{M} (IND_m - \overline{IND})^2}{(\overline{IND})^2}}$$

Fest of linearity using the 50% and 25% runs. Deviation to linearity for API

European

> Test of additivity using the ALL scenarios and "ADD" as the sum of individual precursors reductions. **Deviation to** $100 \times \left(\frac{IND_{ADD} - IND_{ALL}}{IND_{ALL}}\right)$ additivity for API, RPI

Results on variability

- Less variability on O3 BC Mean than PM10 BC Mean
 - 6% versus 22%
- Variability of indicators
 - Very high, depending on the indicator
 - Lower variability on Potency (PTY)

Variability from models M assessed by Norm. Std. Dev. $NSD_{IND} = \sqrt{\frac{\sum_{m=1}^{M} (IND_m - \overline{IND})^2}{(\overline{IND})^2}}$

Results on variability

- Less variability on O3 BC Mean than PM10 BC Mean
 - 6% versus 22%
- Variability of indicators
 - Very high, depending on the indicator
 - Lower variability on Potency (PTY)

Variability from models M assessed by Norm. Std. Dev. $NSD_{IND} = \sqrt{\frac{\sum_{m=1}^{M} (IND_m - \overline{IND})^2}{(\overline{IND})^2}}$

Linearity on PM10

Deviation=0% means perfect linearity

Linearity on O3 AbsPOTENTIAL(50%)/AbsPOTENTIAL(25%) Mean O3

Impact of online coupling by LMD (courtesy of Arineh Cholakian)

Runs : Paris episode 10/02/2015 to 17/02/2015
 (10 days of spinup period for all domains – BC continued to end of the month)

➤Triple nesting :

- FAIR30(30kmx30km)
- PAR10(10kmx10km)
- PAR03(3kmx3km)

Coupled to WRF – no direct/indirect aerosol effects

- Specific scenarios for aerosol effects
- CAMS-reg anthropogenic emissions
- CAMS global reanalysis Boundary/initial conditions (3-hourly)
- >15 vertical layers: 999hPa to 300hPa

Impact of online coupling by LMD

(Direct - No Indirect)-ref (No Direct - Indirect)-ref (Direct - Indirect)-ref

Impact of activation the online coupling on average over the domain

-50% ALL emissions reduced

Over the whole domain

Over urbanized area (>60%)

Conclusions

High variability of indicators observed in our first results

- > Larger variability on model responses to emission reduction than for absolute values!
- Less variability between models for the Potency compare to Potential

Opportunity for dynamic evaluation

Next steps

- \checkmark In depth work in sub groups on the impact of:
 - Resolution (CIEMAT, LMD, NKUA)
 - Chemistry (CIEMAT, NKUA)
 - Emissions on LT (Alexander de Meij METCLIM/JRC)
- ✓ To be discussed in sub-groups (TOPIC1 & TOPIC2)

✓ Newcomers: Amela and Goran from CroatiaControl (focus on Zagreb)

Thank you for your attention

