A short additional study of absolute and relative thresholds for station representativeness area using uEMEP Bruce Rolstad Denby MET Norway

Calculations

- uEMEP applied to all Europe at 100 m resolution
- Spatial representativeness (SR) area calculated for annual mean NO₂ and PM_{2.5}
- For NO₂ 3000 stations included
- For NO₂ ±10%, ±20% and with/without an absolute cutoff of 2 μg/m³ were calculated
- Results previously distributed in an excel sheet

- Previous results are compared to an NO₂ absolute threshold of ±5 µg/m³
 - NO₂ concentration of 10 μ g/m³ this is equivalent to relative threshold ±50%
 - \circ NO_2 concentration of 25 $\mu g/m^3$ this is equivalent to relative threshold ±20%
 - \circ NO₂ concentration of 50 µg/m³ this is equivalent to relative threshold ±10%

Results: absolute area

Results: relative to AQ zone area

Results

- For the relative threshold calculations, with and without a cut off, the SR areas above 10 μ g/m³ (where $\pm 20\% = \pm 2 \mu$ g/m³) are the same
- At 25 µg/m³ the SR area for the ±20% relative threshold is the same as for the ±5 µg/m³ absolute threshold. Below/above 25 µg/m³ the SR area is larger/smaller. Up to a factor of 5 difference for high concentrations
- Below 10 μ g/m³ the ±5 μ g/m³ absolute threshold tends to cover the entire AQ zone
- Using an absolute threshold will accommodate the current concept of different relative thresholds for traffic and background stations but leads to very large SR areas for low concentrations
- If WHO guidelines are to be followed in the future then an absolute threshold of ±5 µg/m³ will not be suitable

Comments

• Agree with the concept of 'as simple as possible' = one criteria

Relative thresholds

- Small relative thresholds are too stringent for low concentrations (e.g. ±10% at 10 µg/m³)
- Inclusion of a minimum cutoff threshold addresses this but introduces an extra arbitrary number
- Large relative thresholds are possibly not stringent enough for high concentrations (e.g. ±20% at 40 μg/m³ is ±8 μg/m³)
- Relative thresholds based on station type are no longer simple

Absolute thresholds

- High absolute thresholds are not stringent enough for low concentrations (e.g. ±5 μg/m³ at 10 μg/m³)
- Low absolute thresholds are too stringent for high concentrations (e.g. ±2.5 μg/m³ at 40 μg/m³)
- Any change in 'important' concentrations will require a new absolute threshold (e.g. from 40 μg/m³ to 10 μg/m³)

Simple threshold

- Higher concentrations are more important than low but lower concentrations may be important in the future as well
- The middle way: relative threshold = $\pm 15\%$, no cut off

Additional variants

Results: relative to AQ zone area, absolute threshold 2.5

Representativeness fractional area as function of modelled station concentration

Results: relative to AQ zone area, relative threshold 10%

Results: relative to AQ zone area, relative threshold 15%

