FAIRMODE WG4 – Planning Proposed methodology

» Alain Clappier and Philippe Thunis

Air Quality Models

MODEL VALIDATION

Validation based on comparisons of observed and modelled concentrations:

⇒ fine to forecast the concentration exceeding the limit values

⇒ but is it adapted for air quality planning?

MODEL VALIDATION

WG 4: Planning

METHODOLOGIES

METHODOLOGIES

The idea is to find indicators based on the ratio $\Delta C/\Delta E$.

This ratio is, in fact, complex because it depends from several model input parameters.

$\Delta C / \Delta E \text{ RATIOS}$

The ratio $\Delta C/\Delta E$ is relative to a reduction area:

$\Delta C / \Delta E$ RATIOS

The ratio $\Delta C/\Delta E$ is relative to different precursors

The emissions of a series of precursors like NO_x , PPM, VOC, SO_2 , NH_3 , gives pollutant concentrations like PM or O_3 .

- C : Pollutant concentration (O_3) without any emission reduction
- α_{NOx} is the relative emission change of a first precursor (NO_x) $\alpha_{NOx} = \Delta E_{NOx} / E_{NOx}$

 α_{PPM} same but for a second precursor (PPM)

 $C_{\alpha_{NOx}}$: Pollutant concentration after reduction of the first precursor only

 $C_{\alpha_{PPM}}$: same but after reduction of the second precursor only

 T_{α} : Pollutant concentration after reduction of all precursors

Absolute potencies

For several precursors:
$$P_{\alpha} = \frac{\Delta C_{\alpha}}{\Delta E}$$

Pollutant concentration change over the emission change of all the precursors (PPM, NO_x , SO_2 , NH_3 , and VOC).

$$\alpha$$
 the relative change of the total emission: $\alpha = \Delta E/E$ $E = \sum_{k} E_{k}$

For a **single precursor**:

$$\mathbf{P}_{\alpha_{NOx}} = \frac{\Delta C_{\alpha_{NOx}}}{\Delta E_{NOx}}$$

Pollutant concentration change over the emission change of NO_x only.

 α_{NOx} is the relative emission change of the precursor: $\alpha_{NOx} = \Delta E_{NOx} / E_{NOx}$

Single vs. several precursors contributions

Impact of NO_x reduction on PM10 over Po Valley

Relative potencies

$$\Delta C_{\alpha} \implies \Delta C_{\alpha}/C$$
 and $\Delta E \implies \Delta E/E = \alpha$

For several precursors:

$$p_{\alpha} = \frac{\Delta C_{\alpha}/C}{\Delta E/E} = \frac{\Delta C_{\alpha}/C}{\alpha}$$

Relative concentration change over the relative emission change of all the precursor (NO_x , PPM, VOC, \dots).

For a **single precursor**:

$$p_{\alpha_{NOx}} = \frac{\Delta C_{\alpha_{NOx}} / C}{\alpha_{NOx}}$$

Relative concentration change over the relative emission change of NO_x only.

"Bounded" indicators

Relative impact of NO_x reduction on PM10 over Po Valley

Negative and positive contributions

Maximum potency

Relative impact of NO_x reduction on PM10 over Po Valley 1.0 56%0.5 25, 5% $\mathbf{J} = \frac{p_{\alpha_{NOx}}}{\left|\mathbf{I}_{max}\right|} \mathbf{0.0}$ -0.5 -1.0 -0.50.0. 1.0 -1.0 0.5 $\mathbf{I}_{max} = \max \left[p_{\alpha}; p_{\alpha_{NOx}}; p_{\alpha_{PPM}}; \dots \right]$

 $I_{max} = 0.5$ $\Delta C_{\alpha} / C = 0.5 \times \alpha$ $\Delta C_{\alpha} / C = 0.5 \times 20\% = 10\%$ $\Delta C_{\alpha} / C = 0.5 \times 30\% = 15\%$ $\Delta C_{\alpha} / C = 0.5 \times 100\% = 50\%$

J = 0.25

a NO_{x} reduction lead 25% of the maximum reduction

ROBUSTNESS

The potency is robust if it does not change significantly with the abatement ratio: $|p_{\alpha} \approx p_{\beta}|$

If $I_{max} = 0.5$ for 20% emission reduction then

20% emission reduction leads to $\Delta C_{\alpha}/C = 0.5 \times 20\% = 10\%$ reduction

If I_{max} is robust:

then, 30% emission reduction leads to $\Delta C_{\alpha}/C = 0.5 \times 30\% = 15\%$ reduction 40% emission reduction leads to $\Delta C_{\alpha}/C = 0.5 \times 40\% = 20\%$ reduction

100% emission reduction leads to $\Delta C_{\alpha}/C = 0.5 \times 100\% = 50\%$ reduction

ROBUSTNESS and LINEARITY

For a **single precursor** the potency is robust when the concentration change linearly with the emission: ΔC

$$\Delta C_{\alpha_{NOx}} = a \cdot \Delta E_{NOx} \qquad \qquad \frac{\Delta C_{\alpha_{NOx}}}{\Delta E_{NOx}} = a$$

The absolute and relative potencies are, then, constant with the abatement ratio.

The potencies for single precursor can always be split into a linear and a non linear term:

$$p_{\alpha_{NOx}} = p_{\alpha_{NOx}}^{lin} + p_{\alpha_{NOx}}^{nlin}$$

the linear term being robust.

$$p_{\alpha_{NOx}}^{lin} = p_{\beta_{NOx}}^{lin}$$

ROBUSTNESS and LINEARITY

For several precursors the potencies can be split into the following terms:

$$p_{\alpha} = \sum_{k} p_{\alpha_{k}} + p_{\alpha}^{int}$$

 $\sum_{k} p_{\alpha_{k}}$ is the sum of the potencies of each single precursors (NOx, PPM, VOC, ...) p_{α}^{int} is a term related to the interaction between the precursors.

In the situation where the interaction term is very small,

if
$$p_{\alpha_{NOx}} = 0.2$$
 and $p_{\alpha_{PPM}} = 0.3$ then $p_{\alpha} = 0.2 + 0.3 = 0.5$

so 20% NOx emission reduction leads to $\Delta C_{\alpha_{NOx}}/C = 0.2 \times 20\% = 4\%$ reduction 20% PPM emission reduction leads to $\Delta C_{\alpha_{NOx}}/C = 0.3 \times 20\% = 6\%$ reduction

20% NOx and PPM emission reductions lead to $\Delta C_{\alpha}/C = 4\% + 6\% = 10\%$

ROBUSTNESS and LINEARITY

Introducing the linear and non linear terms of the single precursor potencies we can write:

$$p_{\alpha} = \sum_{k} p_{\alpha_{k}}^{lin} + \sum_{k} p_{\alpha_{k}}^{nlin} + p_{\alpha}^{inn}$$

When the concentration change linearly with the emission of several precursors we have:

$$p_{\alpha} = \sum_{k} p_{\alpha_{k}}^{lin}$$

Consequently, if the concentration change linearly with the emission of several precursors, the potency for these precursors is robust.

But the opposite is not true. We can be in situation where the potency for several precursors is robust but the concentration is not changing linearly with the emissions of these precursors, for example if:

$$\sum_{k} p_{\alpha_{k}}^{nlin} = 0 \quad \text{and if the interaction terms are constant:} \quad p_{\alpha}^{int} = p_{\beta}^{int}$$

Thank you

