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Objectives
• Summarize prior guidance attempts to 

ensure evaluation and validation of 
model results

• Provide examples of common pitfalls, 
limitations, and uncertainties in source 
apportionment studies and how to 
overcome them

• Suggest some improvements for 
receptor model evaluation and 
evaluation guidance



Receptor models have made large contributions to 
air quality management for 40 years

• Identified uninventoried sources as important 
contributors (wood combustion, cooking, biogenics, 
road dust, secondary organic and inorganic 
aerosol, high emitters)

• Focused emission inventory improvements
• Separated primary emittants from secondary 

formation products
• Allowed development of conceptual models for 

interactions among emissions, meteorology, 
chemical transformations, and ambient 
concentrations

• Still the only method to estimate contributions 
from intermittent and fugitive emissions



Receptor models are complementary with, not replacements for, 
source models

Watson, 1979
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The source model uses source emissions as inputs and 
calculates ambient concentrations. 
The receptor model uses ambient concentrations as 
inputs and calculates source contributions.  



Receptor modeling has enhanced the concept of using multiple 
pollutants from multiple sources to assess multiple effects

Chow, J.C.; Watson, J.G. (2011). Air quality management of multiple pollutants and multiple effects. Air Quality and Climate Change Journal, 45(3):26-32. 
https://www.researchgate.net/publication/234903062_Air_quality_management_of_multiple_pollutants_and_multiple_effects?ev=prf_pub.



The future holds several 
challenges for receptor modeling

• Pollution controls have eliminated many 
of the elemental markers

• Secondary organic aerosol has become a 
larger portion as primary emissions 
decrease

• Common availability of modeling software 
and speciated data sets has led to 
publication of many spurious results



Source and receptor models derive from the 
same physical construct

Cikl = ΣjΣmΣnFijTijklmnDklnQjkmn

i = pollutant
j = source type
k = time period 
l = receptor location 
m = source sub-type, a specific source or groups of 

emitters with similar source compositions and/or 
locations 

n = location of emitter m of source type j
Cikl = ambient concentration
Fij = fractional quantity of pollutant i in source j
Tijkmn = transformation of pollutant i during transport
Dkln = dispersion and mixing between source and receptor
Qjkmn = emissions rate



Lagrangian Source Model

Cikl = ΣjΣmΣn TijklmnDklnFijQjkmn
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Source and receptor models are complementary 
with, not replacements for each other



Least squares minimization solutions are often referred to as 
“the CMB” model, but PMF and UNMIX are also solutions, not 

separate models

EV-CMB: 2 =minΣi [(Ci-ΣjFijSj)2/(ϭCi
2+ΣjϭFij

2Sj
2)]

Effective Variance, Watson et al., (1984), single sample

OWLS-CMB:  2 =minΣi [(Ci-ΣjFijSj)2/ϭCi
2)]

Ordinary Weighted Least Squares, Friedlander (1973), single 
sample

PMF-CMB: 2 =minΣi Σk [(Cik-ΣjFijSjk)2/ϭCik
2)]

Positive Matrix Factorization, Paatero (1997), multiple samples

TRACER-CMB:  Sj=Ci/Fij
Tracer solution, Hidy and Friedlander (1971), Winchester and 
Nifong (1971), single sample



CMB applications and validation protocols need to be adapted 
to address these new challenges and to accommodate all of the 

solution methods

Finalized in 1998, but dated 2004

1987

www.epa.gov/scram001/models/receptor/C
MB_Protocol.pdf



Steps in the applications and validation 
protocol applies equally well to all of the CMB 

solutions, but they are rarely followed

1. Determine the applicability of CMB
2. Format input files and perform initial model runs
3. Evaluate outputs and performance measures
4. Evaluate deviations from model assumptions
5. Modify model inputs to remediate problems 
6. Evaluate the consistency and stability of the model 

results
7. Corroborate CMB results with other modeling and 

analyses 



Step 7 has been further elucidated as a 
“weight of evidence” evaluation

www.epa.gov/ttn/scram/guidance/guide/
final-03-pm-rh-guidance.pdf

• Examine the problem 
using different methods

• Use discrepancies 
between model results to 
identify and correct 
weaknesses in models 
and input data

• Quantify confidence 
intervals

• Explain and qualify 
conclusions regarding 
source contribution 
estimates



European guidance on receptor modeling is important for 
introducing more rigor into the source apportionment process

Belis, et al., 2014



Weight of evidence was lacking in a recent 
EV-CMB source apportionment in India

• Good start
–Network was well 

designed
–Source types were 

identified and 
characterized

–Marker species were 
measured

–Source and receptor 
species were 
compatible



Danger of Ignoring the Weight of Evidence:

• Weight of evidence would include external data from vehicle and stove 
emission tests, comparisons with apportionments from different cities, 
examination of other data such as continuous gas and particle 
measurements. 



Sensitivity tests would have shown that several profiles are 
collinear, and their source designation must be generalized 

Sethi and Patil, 2008a,b



Internal consistency tests would have revealed discrepancies 
between size fractions and sampling locations

NEERI, 2010



Data validation for PM2.5 source apportionment at 
Peking University was good

Zhang, et al., 2013

SO4 was totally 
neutralized by NH4, 

indicating that 
contributions are more 

regional than local



But the “Industrial Pollution” factor at road-centric 
Peking University doesn’t make sense!

Zhang, R.; Jing, J.; Tao, J.; Hsu, S.C.; Wang, G.; Cao, J.J.; Lee, 
C.S.L.; Zhu, L.; Chen, Z.; Zhao, Y.; Shen, Z. (2013). Chemical 
characterization and source apportionment of PM2.5 in Beijing: 
seasonal perspective. Atmos. Chem. Phys., 13(14):7053-7074. 
http://www.atmos-chem-phys.net/13/7053/2013/.

PMF analysis of elements, 
ions, and carbon at PKU 

4/2009 to 1/2010



Suggestions for future updates to the European Guide

•Show that most of the methods are different 
solutions to the CMB equations, and label them 
as such.  (e.g., C14, OC/EC ratios, aethalometer 
methods are really tracer solutions).

•Be more explicit about importance of network 
design, i.e. samples from urban-, regional-, and 
near-source locations.

• Provide more instruction on sensitivity and 
stability tests

• Elaborate on availability and use of microsensors 
to accompany filter samplers 

•Recommend multiple CMB solutions (e.g., EV, 
PMF, UNMIX) applied to the same data sets

• Emphasize the need for and practical approaches 
to obtaining source profiles

• Provide more explicit examples of how receptor 
models have solved air quality problems



The importance of real-world, multi-pollutant emission rates and 
source profiles, and their evolution, is under-appreciated

Belis et al., 2014



Table B1 “Common sources of PM in ambient air” is fairly complete 
for general contributors, but a small number of source sub-types 

cause excessive levels in Europe and North America

Belis et al., 2013

• Primary particles from power plants and industrial sources are usually 
detectable, but at very low levels

• Wood-burning smoldering and ignition phases often contribute more than 
the flaming phase

• High emitters of engine exhaust are often important
• Maritime transport means ship engine emissions



Each PMF and 
Unmix source 

factor should be 
compared with 

at least one 
measured 

profile

Example from 
Minnesota

Chen et al. 2010, 2011



New technologies can be combined into multipollutant systems 
to obtain source profiles as well as emission rates
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Continuous measurements with microsensors can be used 
with filters to help resolve collinear profiles



Portable instruments can be used after sampling to 
determine the zone of influence around a sampling 

location

Hansen and Mocnik, 2010
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Short-term near-
source monitoring 
can obtain source 
profiles and better 

separate PMF 
factors
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Mille Lacs

Minneapolis –
Phillips 

Neighborhood
St. Paul –

Harding H.S. Rochester

EV PMF

Applying different CMB solutions to the same data set aids in the Weight of Evidence
(Minnesota, 8/2003 – 7/2004, most samples passed validation tests )

PMF soil and cement factors are mixed with regional, Biomass similar 
to regional, Gas/diesel split uncertain, PMF overestimates mass

Chen et al., 2011



• Oregon wood stove emissions standard (Watson, 1979)

• Midwest contributions to east coast sulfate and ozone 
(Wolff et al., 1977, Lioy et al., 1980, Mueller et al., 1983, Rahn and 
Lowenthal, 1984)

• Washoe County, Nevada, stove changeout, burning ban, 
and “squealer” number (Chow et al., 1989)

• California EMFAC emissions model revisions (Fujita et al., 
1992, 1994)

• SCAQMD (Los Angeles) grilling emission standard (Rogge, 
1993)

• SCAQMD (Los Angeles) street sweeper specification 
(Chow et al., 1990)

• SCAQMD (Los Angeles) Chino dairy reduction (NH3) 
regulation (SCAQMD, 1996)

European examples of receptor models in air quality 
management need to be added to other examples



European examples of receptor models in air quality 
management need to be added to other examples

• PM10 SIP implementation of wood burning, road dust, 
and industrial emission reductions (Davis and Maughan, 
1984, Houck et al., 1981, 1982, Cooper et al., 1989)

• Navajo Generating Station SO2 scrubbers (Malm et al., 
1989)

• Hayden Generating Station SO2 scrubbers (Watson et al., 
1996)

• Mohave Generating Station shutdown (Pitchford et al., 
1999)

• Denver Colorado urban visibility standard (Watson et al., 
1988)

• Taxi cabs from diesel to natural gas in Hong Kong (Louie 
et al., 2005a, 2005b)

• California’s San Joaquin Valley SIP (Chow et al., 2007)



Conclusions

• Receptor model source apportionment has 
played a positive role in improving air quality 
management

• Updated guidance is needed for future 
applications, especially in developing 
countries.

• FAIRMODE WG3 seems to be the only 
authoritative group addressing this issue, and 
implications for this guidance extend beyond 
the European situation
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