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ODbjectives

e Summarize prior guidance attempts to
ensure evaluation and validation of
model results

e Provide examples of common pitfalls,
limitations, and uncertainties in source
apportionment studies and how to
overcome them

e Suggest some improvements for
receptor model evaluation and
evaluation guidance



Receptor models have made large contriputions to
alr quality management for 40 years

Identified uninventoried sources as important
contributors (wood combustion, cooking, biogenics,
road dust, secondary organic and inorganic
aerosol, high emitters)

Focused emission inventory improvements

e Separated primary emittants from secondary
formation products

e Allowed development of conceptual models for
interactions among emissions, meteorology,
chemical transformations, and ambient
concentrations

o Still the only method to estimate contributions
from intermittent and fugitive emissions



Receptor models are complementary with, not replacements for,
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Receptor modeling has enhanced the concept of using multiple
pollutants from multiple sources to assess multiple effects
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The future holds several
challenges for receptor modeling

e Pollution controls have eliminated many
of the elemental markers

e Secondary organic aerosol has become a
larger portion as primary emissions
decrease

e Common availability of modeling software
and speciated data sets has led to
publication of many spurious results



Source and receptor models derive from the
same physical construct

Ciki = ijmznFijTijkImnDkIankmn

| = pollutant
] = source type
K = time period
I = receptor location
m

= source sub-type, a specific source or groups of
emitters with similar source compositions and/or

locations
n = location of emitter m of source type j
Ciq = ambient concentration
Fii = fractional quantity of pollutant i in source j
Tikmn = transformation of pollutant i during transport
Dy, = dispersion and mixing between source and receptor

Qumn = €missions rate




Source and receptor models are complementary
with, not replacements for each other
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|_east squares minimization solutions are often referred to as
“the CMB” model, but PMF and UNMIX are also solutions, not
separate models

Tracer solution, Hidy and Friedlander (1971), Winchester and
Nifong (1971), single sample

OWLS-CMB: »2 =minZ; [(C-ZF;S,)%/6¢?)]

Ordinary Weighted Least Squares, Friedlander (1973), single
sample

EV-CMB: »? =minZ; [(C-Z;F;;S;)?/(6¢*+Z;6F;°S;?)]

Effective Variance, Watson et al., (1984), single sample

PMF-CMB: %2 =minZ; %, [(Cy-ZF:Si)%/ 6cid)]

Positive Matrix Factorization, Paatero (1997), multiple samples



CMB applications and validation protocols need to be adapted
to address these new challenges and to accommodate all of the
solution methods

EPA-450/4-87-010

Office of Air Quality
May 1987

nited States
Environmenta | Protection Planning and Standards
Research Triangle Park NC 27711

o HPA Protocol For 1987

Applying And
Validating The
CMB Model

S @, Finalized in 1998, but dated 2004
wws.epa.gov/scram001/models/receptor/C
MB Protocol.pdf

Protocol for Applying and Validating the
CMB Model for PM25 and VOC
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Steps In the applications and validation
protocol applies equally well to all of the CMB
solutions, but they are rarely followed

. Determine the applicability of CMB

Format input files and perform initial model runs
Evaluate outputs and performance measures
Evaluate deviations from model assumptions
Modify model inputs to remediate problems
Evaluate the consistency and stability of the model
results

Corroborate CMB results with other modeling and

analyses



Step 7 has been further elucidated as a
“welght of evidence™ evaluation

EPA 454/B-07-002
 April 2007
www.epa.gov/ttn/scram/quidance/quide/

final-03-pm-rh-quidance.pdf

Guidance on the Use of Models and Other
Analyses for Demonstrating Attainment of
Air Quality Goals for Ozone, PM, ., and
Regional Haze

We would also like to acknowledge the contmbutions and accomplishments of Ned
Meyer. Ned wrote the original drafts of the ozone and PM, , modeling guidance documents. He
also developed the relative attainment tests and put hus vision on paper. The final version of this
guidance is shaped by Ned's words and thoughts

This gnidance is a living acma:m::ln_a be revised periodically. Updates, revizions,

.J:n: acu:n:u:] dorumentation 'l.|J_l' EIOVE :|E:| TP WWW.epa. oV i s cram.. -'|_ mention

Examine the problem
using different methods

Use discrepancies
between model results to
identify and correct
weaknesses in models
and input data

Quantify confidence
intervals

Explain and qualify
conclusions regarding
source contribution
estimates
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Weight of evidence was lacking In a recent
EV-CMB source apportionment in India
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compatible



Danger of Ignoring the Weight of Evidence:

LPG most polluting? K ,xpel (s dlsd;,l ee
Chetan Chauhan OPERISSAGOT e Scier _

NEW DELHE A

e Weight of evidence would include external data from vehicle and stove
emission tests, comparisons with apportionments from different cities,
examination of other data such as continuous gas and particle
measurements.



Sensitivity tests would have shown that several profiles are
collinear, and their source designation must be generalized
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Data validation for PM, . source apportionment at
Peking University was good

SO, was totally

neutralized by NH,,

Indicating that
contributions are more
regional than local

Zhang, et al., 2013




But the “Industrial Pollution’ factor at road-centric
Peking University doesn’t make sense!

Table 2. Relative contmbutions from six identified sources of PM7 5
in Beijing within the one-year and four-season penods.

%0 Sprme  Summer Automn  Winter  Anmal
Sl st 3% 3% 18%: 16% 15 %
Coal combustion 5 1% 7% 57 % 18 %2
B]m_::-tlm 193 §%a 177 Pl 12%;
Traffic and wmsie 5 Vo 4% 4% 2% 4%
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'1_-; e = - 0a A

PMF analysis of elements,
1ons, and carbon at PKU
4/2009 to 1/2010

Zhang, R.; Jing, J.; Tao, J.; Hsu, S.C.; Wang, G.; Cao, J.J.; Lee,
C.S.L.; Zhu, L.; Chen, Z.; Zhao, Y.; Shen, Z. (2013). Chemical
characterization and source apportionment of PM2.5 in Beijing:
seasonal perspective. Atmos. Chem. Phys., 13(14):7053-7074.
http://www.atmos-chem-phys.net/13/7053/2013/.
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Suggestions for future updates to the European Guide

e Show that most of the methods are different
FERENCE REPORT:S solutions to the CMB equations, and label them
M ol as such. (e.g., C14, OC/EC ratios, aethalometer
Fﬂ_‘;_; -i d 1
W’E methods are really tracer solutions).

e e Be more explicit about importance of network

Air Pollution S i i - ' -
i Shuss design, i.e. samples from urban-, regional-, and

with Receptor Models nea r—source Iocatlons.

=55 o Provide more instruction on sensitivity and
stability tests

e Elaborate on availability and use of microsensors
to accompany filter samplers

e Recommend multiple CMB solutions (e.g., EV,
PMF, UNMIX) applied to the same data sets

e Emphasize the need for and practical approaches
to obtaining source profiles

e Provide more explicit examples of how receptor
models have solved air quality problems
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representation of the
different methods for
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Table B1 “Common sources of PM in ambient air™ is fairly complete
for general contributors, but a small number of source sub-types
cause excessive levels in Europe and North America

marine salt industrial emissions

crustal material secondary ammonium sulphate
road dust secondary ammonium nitrate
gasoline vehicle exhaust biomass burning / wood burning
diesel vehicle exhaust maritime transport

power plants secondary organic aerosol

e Primary particles from power plants and industrial sources are usually
detectable, but at very low levels

e Wood-burning smoldering and ignition phases often contribute more than
the flaming phase

e High emitters of engine exhaust are often important
e Maritime transport means ship engine emissions

Belis et al., 2013
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NEeW technologies can be combined INto multipoliutant Sys
[0 Optaln source protiies as Well as emission rates
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Continuous measurements with microsensors can be used
with filters to help resolve collinear profiles

100000 10000
o PM1 a PM25 ——PM4 , o PM1 a PM25 —PM4

)éq( —PM10 —<PMTSP

—PM10 —<PMTSP ﬂ(

10000

1000

EIn

Eiuﬁ

Vopdosly Ll | l !
i’» S &1“7 é{h“ i“ﬁ-,

| _l-
-_

100 +

lli i i

DRX PM Concentration (ug/m®)
DRX PM Concentration (ug/m®)

=
o
\i

1 1
Q O Q ) Q Q \) O Q Q \) Q Q Q Q Q O Q O Q Q Q
Q & Q & Q &) Q & Q &) Q Q B Q & Q D) Q & Q & Q
AN SN S A N N S AN SN S N N A AN
Sampling Time at United Rock Site 1 on 9/26/2008 Sampling Time at Vulcan Site 1 on 10/9/2008

Sand/gravel Facility A Sand/gravel Facility B

yries

* Using TSI
DustTrak DRX

Watson et al., 20"



Portable instruments can be used after sampling to
determine the zone of influence around a sampling
location

(Xian, China)
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Applying different CMB solutions to the same data set aids in the \WWeight of Evidence
(Minnesota, 8/2003 — 7/2004, most samples passed validation tests )
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European examples of receptor models in air quality
management need to be added to other examples

e Oregon wood stove emissions standard (Watson, 1979)

e Midwest contributions to east coast sulfate and ozone
(Wolff et al., 1977, Lioy et al., 1980, Mueller et al., 1983, Rahn and
Lowenthal, 1984)

Washoe County, Nevada, stove changeout, burning ban,
and “squealer” number (Chow et al., 1989)

California EMFAC emissions model revisions (Fujita et al.,
1992, 1994)

SCAQMD (Los Angeles) grilling emission standard (Rogge,
1993)

SCAQMD (Los Angeles) street sweeper specification
(Chow et al., 1990)

SCAQMD (Los Angeles) Chino dairy reduction (NH5)
regulation (SCAQMD, 1996)



European examples of receptor models in air quality
management need to be added to other examples

e PM,, SIP implementation of wood burning, road dust,

and industrial emission reductions (Davis and Maughan,
1984, Houck et al., 1981, 1982, Cooper et al., 1989)

e Navajo Generating Station SO, scrubbers (Malm et al.,
1989)

e Hayden Generating Station SO, scrubbers (Watson et al.,
1996)

e Mohave Generating Station shutdown (Pitchford et al.,
1999)

e Denver Colorado urban visibility standard (watson et al.,
1988)

e Taxi cabs from diesel to natural gas in Hong Kong (Louie
et al., 20053, 2005b)

e (California’s San Joaquin Valley SIP (Chow et al., 2007)



Conclusions

e Receptor model source apportionment has
played a positive role in improving air quality
management

e Updated guidance is needed for future
applications, especially in developing
countries.

e FAIRMODE WG3 seems to be the only
authoritative group addressing this issue, and
implications for this guidance extend beyond
the European situation
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