



# Comparing source apportionment results from CTM with PMF / tracer data

**Experiences with LOTOS-EUROS** 

Carlijn Hendriks, Richard Kranenburg, Martijn Schaap - TNO Ulrich Quass, Thomas Kuhlbusch - IUTA Jordy Vercauteren - VMM







innovation





innovation

#### Why compare / combine RM and CTM results?

- Numerous studies available performing source apportionment based on experimental data using PMF
  - > Real world, but limited number of source profiles
- > Chemistry transport models implicitly also perform a source attribution
  - Detailed information possible, but not the real world
- Experimental Source Apportionment and CTM derived Source Apportionment should come together and may provide a strong combination.
- Validation of CTM source attribution results may be possible with PMF data
- Results can be highly relevant for policy makers





0.0

0.8

1.6

Lotos Euros Concentration no3a [µg/m<sup>3</sup>]

POM

2.4

3.2

4 0

M. Schaap Fossil Fuel pilot

#### **LOTOS-EUROS model for PM calculations**





PPM







0.0

Sea salt

**TNO** innovation for life





EC

NH4

0.0 1.2 2.4 3.6 4.8 6.0 Lotos Euros Concentration ss [µg/m³ ]

Dust





















innovation for life

#### Particulate Source Apportionment Technology



Example of two source classes and the SO2-sulfate system







#### Simulation set-up: illustration



Concentration resulting from Foreign Power Generation at time 0

Concentration resulting from Dutch Road Transport at time 0









**TNO** innovation for life

## Detailed emission inventories crucial for SoAp using CTMs















**TNO** innovation for life

### Contribution of emission sources to PM components







#### **Contribution of medium liquid fuels to EC**

medium liquid fuels (diesel) to EC



Solid fuels to SO4

o innovation for life











**TNO** innovation for life

#### Source apportionment of Particulate Matter : PMF modelling









#### **Rotterdam – All results**









#### **Rotterdam – All results**







# Modelled heavy oil combustion in international shipping





o innovation for life

from Heavy liquids international shipping







innovation for life

#### V-Ni comparison - heavy fuel oil - PM





#### Contributions from heavy oil combustion from shipping

for life

Agrees with a ~2% V fraction of PPM10







innovation

#### **Limitations and challenges**

- Emissions available with high detail, but continuous quality improvement is needed (and can be expensive)
- Emission inventories are not always consistent across countries
- Emission characteristics:
  - Country and sector specific PPM split in tracers (lot of work!)
  - Emission timing
- Matching source categories CTM and RMs not straightforward
- CTMs miss part of PM mass (partly due to lacking sources in emission inventories)







#### **Challenge: Inconsistent emissions**







**TNO** innovation for life

#### Carbonaceous aerosol < 2.5 um in UNECE-Europe for 2005



Limited impact on EC, major change in OC Changes in individual countries differ from European average







#### Conclusions

- Comparing RM and CTM source apportionment results gives valuable insights for both model communities
- Comparison not straightforward because of limitations of both SoAp methodologies
- For CTM SoAp, detailed emission data (many sectors, many tracers, emission timing) is needed
- In spite of (or: because of?) the challenges associated with comparing RM and CTM model results, we can learn a lot by doing so!







#### Thank you!