

The initiative on harmonisation of source apportionment with Receptor Models in Europe main results 2010-2013

C.A. Belis European Commission, Institute for Environment and Sustainability – JRC

and the source apportionment community

Fairmode Technical Meeting, Kjeller, 28-29/04/2014

Are RMs appropriate for air quality management?

REVIEW

Deliverables

Enhancing source apportionment with receptor models to foster the air quality directive implementation. Karagulian & Belis, 2012 IJEP 50

Needs for the development of RMs in Europe

Current trends in the use of models for source apportionment of air pollutants in Europe E. Fragkou, I. Douros, N. Moussiopoulos, C. A.Belis. 2012 IJEP 50

Includes all types of SA methodologies

Critical Review and meta analysis of ambient particulate matter source apportionment with receptor models. C.A. Belis. F. Karagulian, B. Larsen, P.K. Hopke. 2013 Atmospheric Environment.69,94-108

RMs description and classification + meta analysis

272 records in 108 papers 2012

INTERCOMPARISON

Commission

First step (real-world dataset) 16 participants

ORGANIZATION	COUNTRY
IDAEA CSIC	SPAIN
Univ. Aahrus	DENMARK
University of Genoa	ITALY
Finnish Meteorological Institute	FINLAND
INERIS/LSCE	FRANCE
University of Birmingham	UNITED KINGDOM
Norwegian Institute for Air Research (NILU)	NORWAY
Department of Physics University of Florence	ITALY
University of Milan Bicocca	ITALY
C.N.R. Institute for Atmospheric Pollution Research	ITALY
IUTA e.V.	GERMANY
NCSR Demokritos, Environmental Research Laboratory	GREECE
Dept. of Physics - University of Milan	ITALY
Paul Scherrer Institut Laboratory of Atmospheric Chemistry	SWITZERLAND
C.N.R - I.S.A.C.	ITALY
JOINT RESEARCH CENTRE	European Commission

Second step (synthetic dataset) 22 participants

ORGANIZATION	COUNTRY
IDAEA CSIC	SPAIN
Univ. Aahrus	DENMARK
University of Genoa	ITALY
Finnish Meteorological Institute	FINLAND
University College Cork	IRELAND
University of Birmingham	UNITED KINGDOM
University of Florence Department of Physics	ITALY
Faculty of Science Charles University in Prague	CZECH REPUBLIC
National Institute of Public Healt and	THE
the Environment (RIVM)	NETHERLANDS
C.N.R. Institute for Atmospheric Pollution Research	ITALY
Miguel Hernández University	SPAIN
NCSR Demokritos, Environmental	CDEECE
Research Laboratory	GREECE
University of Milan Dept. of Physics	ITALY
Paul Scherrer Institute - Laboratory of Atmospheric Chemistry	SWITZERLAND
C.N.R - I.S.A.C.	ITALY
Aristotle University of Thessaloniki	GREECE
University of Milan Bicocca	ITALY
University of Aahrus	DENMARK
University of Lisbon	PORTUGAL
Pontificia Universidad Católica de Chile	CHILE
University of Sao Paulo	BRAZIL
Joint Docopych Contro	European
JUIIL RESEARCH CEILL'E	

Commission

Joint Research Centre

Real-world Dataset

To have inorganic and organic species two datasets collected in

the St. Louis supersite were merged.

The final dataset contained 178 $PM_{2.5}$ 24 h samples with 42

chemical species.

Original publications:

-Lee, J. H., Hopke, P. K., and Turner, J. R., 2006. Source identification of airborne PM_{2.5} at the St. Louis-Midwest Supersite. Journal of Geophysical Research D: Atmospheres 111,

-Jaeckels, J. M., Bae, M. S., and Schauer, J. J., 2007. Positive matrix factorization (PMF) analysis of molecular marker measurements to quantify the sources of organic aerosols. Environmental Science and Technology 41, 5763-5769.

Synthetic Dataset

A run was executed using CAMx and PSAT over a computational domain covering the whole Po Valley. $PM_{2.5}$ sources were extracted for a cell located in the city of Milan. Noise was introduced «a posteriori».

The final input data matrices contained 364 24 h samples with 38 inorganic and organic species.

INTERCOMPARISON EXERCISE FOR RM

 MODEL
 SOLUTIONS

 EPA PMF v3.0
 8

 PMF-2
 6

 EPA CMB 8.2
 4

 APCS
 1

 COPREM
 1

 ME-2
 1

 PCA
 1

 TOTAL
 22

	MODEL	SOLUTIONS
⇒	EPA PMF v3.0	12
⇒	PMF-2	3
	EPA PMF v5.0	1
	EPA PMF V4.1 (beta)	1
➡	EPA CMB 8.2	4
	CMB-ROBOTIC	1
	COPREM	1
	ME-2	1
	FA-MLRA	2
	TOTAL	26

Joint Research Centre

Evaluation Methodology \rightarrow by source categories (Belis et al., submission)

Complementary tests Provide ancillary information about the solutions' performance

Mass closure Number of factor/sources

Preliminary tests Test if source/factors belong to a given source category

Fingerprints — Pearson, Pearson (log transformed), Weighted Difference

Time-trends -----> Pearson

Species contributions (%) \rightarrow Pearson

= % of species total matrix (EPA PMF v3) = explained variation (PMF 2) = contribution by species (CMB 8.2)

(Karagulian & Belis, 2012)

xi: solution i X: reference u: uncertainty

 $WD_{ij} = 1/n \sum_{a=1}^{11} \frac{x_{ia} - x_{ja}}{\sqrt{s_{ia}^2 + s_{ja}^2}}$

Source/factors accepted if pass > 50% of the tests

Performance tests evaluate if SCEs fall within an established quality objective

$$z - score(SCE) = \frac{x_i - X}{\sigma_p}$$

 σ_p = uncertainty criterion 50%

INTERCOMPARISON EXERCISE FOR RM

STEP 1

<u>ОСТ</u> ОС1

OC2

OC3

OC4

OP

ECT

EC1m EC2

EC3

SO4 NO3

NH4

AI

As

Ba

Са

Со

Cr

Cu

Fe Hg K Mn

Ni

Ρ

Pb

Rb Se

> Si Sr

Ti V

Zn Zr

Data set: mass concentrations of species and uncertainties

INORGANIC DB From June 2001 – May 2003 24h samples collected every day

Reference:

Lee, J. H., P. K. Hopke, and J. R. Turner (2006),

Source identification of airborne PM2.5 at the St. Louis-Midwest Supersite, *J. Geophys. Res.*, 111, D10S10,

indeno(cd)pyrene benzo(ghi)perylene benz(a)anthracene benzo(a)pyrene fluoranthene pyrene coronene benzo(b,k)fluoranthene benzo(e)pyrene benzo(j)fluoranthene dibenz[a,h]anthracene levoglucosan ORGANIC DB From May 2001 – July 2003 24h samples collected every 6th day

Reference:

Jaeckels JM, Bae M.S., Schauer JJ (2007) Positive matrix factorization Analysis of molecular markers measurements to quantify the sources of organic aerosols. *EST*. 41-5763

Structure of data:

- inorganic ions: high uncertainty
- Co, Cr, Hg, Ni, Rb, Ti, Va, Zr have many missing values
- Ca, Fe, Zn, K uncertainties below 5%
- there were differen MDLs, probably due to different analytical batches
- PAHs presented many BDL values.

Complementary Test 1 Modelled vs measured mass

STEP 1

77% of the solutions fall close to the target (20% tolerance for the slope and 2 μ g/m³ tolerance for the intercept).

STEP 2

Complementary Test 2 Number of factor/source profiles

STEP 1

Research

50% of the solutions report between 6 and 10 number of factor/sources. 7 solutions >10 factor/sources 50% of the solutions report the correct number of sources (8). 96% of the solutions between 6 and 9 factor/sources

STEP 1 z scores grouped by solution

STEP 1

z scores grouped by model and by source category

Conclusions STEP 1

- 1. The new methodology used for the evaluation of the IE appears appropriate to test the comparability between factors in terms of both fingerprint and time trend.
- 2. There is a reasonable quantitative agreement between SCE. 86% of the factors meet the acceptability criteria (OK or acceptable).
- 3. The participants' bias in the SCEs are consistent with the 50% maximum uncertainty acceptability criterion adopted in this evaluation.
- 4. However, there was a considerable variability in the number of factors identified by participants.
- 5. Some models were used by only one or two participants, therefore it is not possible to draw conclusions about the performance of these models.
- 6. One limitation of using real world data is that the reference SCEs are obtained as the average of participants. This may obscure a methodology bias. In our case, comparison with published solutions of the same dataset was also satisfactory.

STEP 2 Synthetic Dataset species

LEVOGLUCOSAN	РВ
ORGANIC CARBON	NI
ELEMENTAL CARBON	SR
NO3	CR
S04	SB
CL	SN
NH4	RB
NA	МО
К	AS
CA	CD
MG	CHRYSENE
SI	BENZO(B)FLUORANTHENE
FE	BENZO(K)FLUORANTHENE
AL	BENZO(E)PYRENE
ZN	BENZO(A)PYRENE
TI	INDENO(123,C,D)PYRENE
CU	DIBENZO(A,H)ANTHRACENE
V	BENZO(G,H,I)PERYLENE
MN	CORONENE

Synthetic Dataset sources categories

NAME	CODE	CONTRIB. (µg/m ³)
Biomass burning	BioB	4.33
mmonium sulphate	S04	7.12
Ammonium nitrate	NO3	12.69
Mineral dust	DUST	4.01
Road dust	ROAD	2.68
Sea salt – Road salt	SALT	0.52
Traffic exhaust	TRA	6.63
Industry	INDU	5.11

The final input data matrices contained 364 24 h samples with 38 chemicalspecies including inorganic and organic components.Joint
Research

Synthetic Dataset 2

- Real-world emission profiles for group of sources were used to estimate the concentration of species that are not calculated by the model (e.g. trace elements).
- The final SCEs were obtained by combining the time trend of the sources produced by the model and the chemical profiles of 8 source categories.
- The **noise** was introduced to each species using a *normal distributed random variable (u)* centered on zero with standard deviation equal to the species *average relative standard uncertainty* obtained from a real-world dataset (Larsen et al., 2012)

$$C_{pert,ij} = C_{ij} + (C_{ij} \times u_j)$$

• The **uncertainty** of the input species concentration was generated by fitting a curve to describe the relationship between concentration and uncertainty in the above mentioned dataset.

INTERCOMPARISON EXERCISE FOR RM

z scores grouped by solutions (original and corrected)

Zeta scores

INTERCOMPARISON EXERCISE FOR RM

z-scores in SALT and NO3

z scores grouped by model

Intercomparison Final Remarks

- An 86% and 85 %, of the factors/sources met the acceptability criteria in the first and second step, respectively, indicating that the 50% uncertainty target is substantially observed.
- The overall assessment is mainly valid for models with high number of solutions: EPA-PMF3, PMF2, and EPA-CMB 8.2 (and to a lesser extent ME-2 and COPREM).
- The combination of <u>real-world and synthetic</u> datasets made it possible to assess both models' performance with respect to an unbiased reference and their ability to deal with data noise.
- A tendency to slightly underestimate the relative contribution of dominant sources and to overestimate the relative contribution of small sources (< 5%) was observed.

• EUR Report 2012 (STEP1)

INTERCOMPARISON EXERCISE FOR RM

- Oral presentation at EAC 2012 (STEP1)
- Oral presentation at EAC 2013 (STEP2)
- Oral presentation AAAR 2013 (both steps)
- Scientific paper on methodology (submission)
- Scientific paper on results (in preparation)

JRC SCIENTIFIC AND POLICY REPORTS Results of the European Intercomparison exercise for Receptor Models 2011-2012.

European

Common Protocol: Driving elements

- The main objective is to promote the best available operating procedures and to harmonize their application across Europe.
- Promote implementation of the protocol in new studies
- Establish a feed-back mechanism from users in Ms
- Schedule dissemination and capacity building activities

TABLE OF CONTENTS

JRC F	REFERENCE REPORT - POLICY SUMMARY		5
SUM	MARY		9
PART A: INTRODUCTION TO SOURCE APPORTIONMENT WITH RECEPTOR MODELS		13	
PART	B: HARMONISED RECEPTOR MODEL PROTOCOL		21
B1.	PRELIMINARY EVALUATION OF THE STUDY AREA		21
B2.	DEFINING A METHODOLOGICAL FRAMEWORK		23
B3.	EXPERIMENT DESIGN - CRITERIA FOR SITE AND SPECIES SELECTION		
	AND ESTIMATION OF MINIMUM NUMBER OF SAMPLES		25
B4.	DATA COLLECTION / FIELD WORK / CHEMICAL ANALYSIS		31
B5.	KNOWING YOUR DATASET: BASIC STATISTICS		35
B6.	PRELIMINARY DATA QUALITY CHECKS		39
B7	INPUT DATA UNCERTAINTY CALCULATION		43
B8	CHEMICAL MASS BALANCE MODELS		47
B9. FACTOR ANALYSIS I: SELECTION OF THE NUMBER OF FACTORS AND DEALING			
WITH ROTATIONAL AMBIGUITY (PMF)		51	
B10. FACTOR ANALYSIS II: EVALUATION OF SOURCE CONTRIBUTION ESTIMATION			
	AND MODEL PERFORMANCE INDICATORS		55
B11.	FACTOR ANALYSIS III: CRITERIA FOR FACTOR ASSIGNMENT		59
B12.	TESTS FOR MODEL PERFORMANCE VALIDATION		61
B13.	REPORTING RESULTS AND METHODOLOGY		65
PART	C: ADVANCED MODELS		67
C1.	WIND AND TRAJECTORY ANALYSIS IN SOURCE APPORTIONMENT		67
C2.	C2. THE USE OF PMF and ME-2 IN AEROSOL MASS SPECTROMETER DATA PROCESSING		71
C3.	C3. THE AETHALOMETER MODEL		75
C4. APPORTIONMENT OF THE PM CARBONACEOUS FRACTION: RADIOCARBON			
AND TRACER ANALYSIS		79	
C5. CONSTRAINED AND EXPANDED MODELS IN FACTOR ANALYSIS		85	
			-

Common Protocol: structure

SA studies can be considered as being consistent with the present protocol if :

- 1. The results are described according to the steps proposed in sections B1- B12.
- 2.Expert decisions are described and evidence of the objective information that support them is provided. (essential for critical steps).
- 3.The documentation includes the references of the source profiles used as input or to validate factor assignment.
- 4. The model and version used are clearly reported.
- 5. The quantitative uncertainty of the output is estimated and reported.
- 6.Estimation of overall uncertainty and validation is achieved by comparing outputs from independent models on the same dataset and/or using Monte Carlo permutation and/or displacement analysis techniques.
- 7.Sensitivity analysis is performed to demonstrate that there are no substantial deviations from the mass conservation assumption.
- 8.Only solutions that implement the quality assurance steps described in this guide can claim stateof-the-art performance supported by community-wide intercomparison exercises.

Concluding Remarks

-Most used models and needs were identified in the review process. Needs:

- 1. Quantification of model performances
- 2. Harmonisation of methodologies
- 3. Network of permanent monitoring sites with speciated PM in urban areas
- 4. Creation of source profile repositories
- 5. Mutual validation and integration among different SA techniques
- -The intercomparison exercises demonstrated that RM outputs are consistent with a 50% uncertainty criterion (bullet 1).
- -The common protocol provides harmonized procedures and criteria for most common RM (bullet 2). Continuous update is required to catch up with new and continuosly evolving techniques.
- -More work is neeeded to deal with points 3, 4, and 5.

THANKS TO ALL THE COLLEAGUES WHO CONTRIBUTED TO THIS INTIATIVE Intercomparison exercises :

F. Karagulian, M. Almeida, F. Amato, G. Argyropoulos, P. Artaxo, D.C.S. Beddows, V. Bernardoni, M.C. Bove, S. Carbone, D. Cesari, D. Contini, E. Cuccia, D. Contini, E. Diapouli, K. Eleftheriadis, I. El Haddad, O. Favez, R.M. Harrison, S. Hellebust, I. Hovorka, E. Jang, H. Jorquera, T. Kammermeier, M.Karl, F. Lucarelli, D. Mooibroek, S.Nava, J. K. Nøjgaard, M. Pandolfi, M.G. Perrone, J.E. Petit, A. Pietrodangelo, G. Pirovano, P. Pokorná, P. Paatero, P. Prati, A.S.H. Prévôt, U. Quass, X. Querol, C. Samara, D. Saraga, J. Sciare, A. Sfetsos, G. Valli, R. Vecchi, M. Vestenius, J.J. Schauer, J.R. Turner, E. Yubero

European common protocol for receptor models:

B. R. Larsen, F. Amato, O. Favez, I. El Haddad, R.M. Harrison, A.S.H. Prévôt, S. Nava, U. Quass, R. Vecchi, M. Viana, P. Paatero

