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Introduction-Fundamental Concepts of CMB modeling 

Chemical Mass Balance (CMB) modeling is realized by solving an over determined 

system of linear equations which express ambient concentrations of chemical species 

measured at the receptor site as sums of contributions from individual sources:  

n

j
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Where Ci is the mass concentration of chemical species i in ambient PM, αij is the mass 

fraction of chemical species i in the PM emitted from source j, and Sj is the contribution 

of source j to the total mass of ambient PM.     

 i = 1, 2, .., m  

j = 1, 2, …, n     
 m > n     
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The main assumptions on which CMB models rely can be summarized as follows: 

• All the sources, contributing significantly to a receptor site, have been identified and 

have had their emissions chemically characterized.  

 

• Chemical species do not react with each other, i.e. they add linearly. 

 

• Compositions of source emissions remain constant during ambient and source 

sampling. 

 

• Source compositions are linearly independent of each other. 

 

• Measurement uncertainties are random, uncorrelated and normally distributed. 
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Least Squares (LS) Estimators of Source Contributions (Sj) 

• Ordinary Least Squares (OLS) 
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The OLS fitting method can estimate a set of probable values for the source contributions 

Sj, by minimizing the following likelihood function:  
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Where 

and superscript T denotes the transpose matrix 

System of Normal Equations 
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• Ordinary Weighted Least Squares (OWLS) 
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The OWLS fitting method can estimate a set of probable values for the source 

contributions (Sj), by minimizing the following likelihood function, in which the 

heteroscedasticity of the receptor’s chemical data is reflected as well (Friedlander, 1973):  

CWAAWAS TT 1)(… 

2

2

...0

.........

0...
1

mC

C

W
And    denotes the 

typical error in the 

measurement of Ci. 

iC

Where 

0
2

jS



ARISTOTLE UNIVERSITY 

OF THESSALONIKI 

SCHOOL OF CHEMISTRY / ENVIRONMENTAL  

POLLUTION CONTROL LABORATORY 

• The Britt and Luecke Algorithm 
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The Britt and Luecke algorithm consists of an iterative procedure that may estimate a set 

of probable values for the source contributions Sj, in which all the measurement 

uncertainties are reflected, by minimizing the following likelihood function (Britt and 

Luecke, 1973;Watson et al., 1984):  

Where the over bars indicate the “real” values of the mass fractions 
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Iteration Steps of the Britt and Luecke Algorithm 

• All the estimates for the source contributions Sj are initially set equal to zero. 

 

• The diagonal elements of the effective weighting matrix (Ve
k)-1 are determined 

according to the following relationship: 
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Where superscript k indicates the iteration’s number. 
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• The new estimates for the “real” values of the mass fractions are calculated for each 

source profile (j=1,2,…, n) by: 
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Where VAj is one m x m diagonal matrix with elements on the diagonal and I is the m 

x m identity matrix. 

 

• Finally, the new estimates for the source contributions Sj are calculated by: 
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• The Effective Variance Weighting Least Squares (EFWLS) 

The least squares fitting method of Britt and Luecke can be simplified substantially if the 

differences between the “true” values of the mass fractions and the measured ones are 

considered as negligible, allowing for the following likelihood function to be minimized 

(Watson et al., 1984): 

 

m

i
n

j

k

jC

n

j

jiji

S

SaC

iji

1

1

222

2

12

This approximation (EFWLS) is currently the official method suggested by the 

Environmental Protection Agency of United States (US EPA) for CMB modeling. 
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Application of CMB models for the SA of ambient PM 

• Although CMB modeling is founded upon the “working hypothesis” that every source, 

which contributes significantly to the receptor site, has been identified, it is most often 

applied without any definite knowledge about the ones that actually do, since the 

identification of contributing sources may indeed be one of the major goals of a Source 

Apportionment (SA) study, under normal circumstances.  

 

• CMB modeling also requires that source compositions remain constant over the period 

of ambient and source sampling, which is, nonetheless, unlikely to occur. 

 

• There is virtually nothing to do too, in order to predict an occurrence of collinearity 

among the columns of the effectively weighted source profile matrix during run-time, 

in case that the algorithm of Britt and Luecke, or the EFWLS approximation has been 

adopted for the solution of the CMB problem. 
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• Due to those common violations of CMB assumptions, CMB modeling involves in 

practice first some test applications of the desired LS fitting method to over 

determined linear systems defined by different chemical species and/or source profiles, 

which have been all considered as equally probable for reflecting the true emissions at 

the receptor site, according to the personal judgment of the modeler. 

 

• According to the US EPA Protocol for Applying and Validating the CMB model 

(Watson, 2004), trial CMB tests should first be realized for an averaged ambient 

sample, in order to obtain the so-called “initial source contribution estimates”,  i.e. to 

select a default combination of source profiles and fitting species for the ambient data. 
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• According to the same protocol, the initial source contribution estimates should then 

be optimized separately for each daily ambient sample, again by trial CMBs involving 

addition, depletion or substitution of source profiles, after taking into account 

additional factors, such as wind direction or the presumed temporal variation of 

sources such as biomass burnings.    

 

• The US EPA has also established a standard set of statistical performance measures 

for the evaluation of trial applications, which are given in the following table.  
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Diagnostic criteria of the US EPA CMB 8.2 model 

Performance measure(s) Target value(s) (US EPA) 
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Limitations of conventional CMB modeling 

• A major drawback of conventional CMB modeling arises from the fact that standard 

trial-and-error procedures are strongly subjected to the personal judgment of the 

modeler and his/her choices of fitting species/source profiles. 

 

• The trial CMBs of standard procedures are also limited to a total number far less than 

the ones that can possibly be defined by a typical set of input data, usually a few 

hundred or so. 

 

• The US EPA CMB 8.2 model, in particular, operating in Best Fit Mode, is capable of 

ranking, according to the Fit Measure index, a maximum of only 10 over determined 

linear systems, whose fitting species and source profiles must have been manually 

selected by the CMB modeler, using 10 pairs of species and profiles selection arrays 

that are provided for this purpose, by the model’s graphical user interface (Coulter, 

2004). 
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Application of combinatory analysis for the determination of all possible choices 

between source profiles and/or fitting species of CMB input data 

The total number PN, M of possible choices between the source profiles and/or fitting 

species of CMB input data, including M measured chemical species, and N source 

profiles (M>N) can be calculated by the following equation (Argyropoulos and Samara, 

2010): 

N

J

M

JI

MN
IMI

M

JNJ

N
P

1 1

,
)!(!

!

)!(!

!

• According to the above equation, there is an astronomic total of 1, 613, 294, 846, 589 

possible choices between the source profiles and/or fitting species of a typical set of 

CMB input data, including 23 chemical species, and 18 source profiles. 
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•  585,711,642,651 of these choices also define LS that possess 5 degrees of freedom (K) 

or more, according to the following equation (Argyropoulos and Samara, 2010): 
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• Even if trial applications are further limited to a sub range involving only over 

determined linear systems that consist of specific fitting species, there are still 

262,143 that can be defined by all the possible choices between 18 source profiles, 

according to the following equation (Argyropoulos and Samara, 2010): 
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N PN 

1 1 

2 3 

3 7 

4 15 

5 31 

6 63 

7 127 

8 255 

9 511 

10 1023 

11 2047 

12 4095 

13 8191 

14 16383 

15 32767 

N PN 

15 32767 

16 65535 

17 131071 

18 262143 

19 524287 

20 1048575 

21 2097151 

22 4194303 

23 8388607 

24 16777215 

25 33554431 

26 67108863 

27 134217727 

28 268435455 

29 536870911 
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• It is apparent from the above combinatory analysis that standard trial-and-error 

procedures of conventional CMB modeling, such as the manually-driven Best Fit 

Mode of the US EPA CMB 8.2 model not only are considerably laborious, but can also 

be strongly susceptible to personal prejudices about the study area, because they can 

never rule out the mathematical probability that combinations of source profiles may 

fit ambient data better than the relatively few ones, tested (Argyropoulos and Samara, 

2010) . 

 

• The latter one is indeed a fact that has indeed been acknowledged by the US EPA as 

well, since it is clearly stated in their protocol that “it is possible that more that one 

subset of source types and source profiles will fit the receptor data equally well” 

(Watson, 2004).   
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The Robotic CMB 

 (Argyropoulos and Samara, 2010)  

 

• The Robotic CMB is realized by applying a fitting method to each and every one of the 

over determined linear systems that can be defined by the possible choices between the 

source profiles of given input data (PN) . 

 

• Each trial application that successfully converges to a solution is validated according 

to standard performance measures of the US EPA CMB 8.2 model, such as the absence 

of any negative values among the estimates for the source contributions, the values of 

fit indices χ2
red., and R2, the value of %mass, the value of fraction FracEst, and the 

values of the T-Statistic ratios.  The diagnostic criteria employed for the validation of 

converging trials, are selected by the user, before the beginning of the computational 

procedure. 

 

• After the fitting method has been applied to all the possible combinations of source 

profiles, if there are any successful applications that met the individual performace 

measures, they are ranked according to the overall fitting index FitMeasure. 
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Logic Diagram of 

RCMB 
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The Boolean Function maximized by RCMB 

FitMeasure   f (Choice 1, Choice 2, …, Choice N)   =   

Dependent Variable 

Real Number 

 

Independent Variables 

Boolean (Either TRUE or FALSE) 

 

• The explicit advantage of RCMB is that the best-fit combination of source profiles, 

deriving straight-forwardly from the maximization of FitMeasure, provides a 

mathematically unique solution to the conventional CMB problem, which cannot be 

questioned readily, unless additional information becomes available for the study area 

(Argyropoulos and Samara, 2010) . 
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Test Case-Application of RCMB to the Crows, California PM2.5 data from the 

San Joaquin Valley Air Quality Study (Argyropoulos and Samara, 2010)   

• The ambient data of this set included the PM2.5 concentrations of mass, organic 

carbon (OC) and elemental carbon (EC), nitrate (NO3-), sulfate (SO42-), ammonium 

(NH4+), soluble sodium (Na+) and potassium (K+), and elemental species (Al, Si, S, Cl, 

K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br, and Pb), registered for 33 24-h aerosol 

samples that had been collected at Crows Landing, between June 1988 and June 1989 

(Chow et al., 1990; Coulter, 2004). 

 

• 18 source profiles had been selected by Chow et al. (1990) as input data for trial 

CMBs, in order to establish “initial source contribution estimates”. Estimates of 

source contributions had also been calculated independently for each ambient PM2.5 

sample, with manual addition, deletion, or substitution of source profiles (Chow et al., 

1990).  

 

• All source contribution estimates had been determined from the EFWLS estimator, by 

using the USEPA/ DRI CMB 7.0 model (Chow et al., 1990).  
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Profile ID Profile Mnemonic Description of Source Profile 

01  SOIL01 Stockton Agricultural (Peat) Soil 

02 SOIL03 Fresno Paved Road Dust 

15 SOIL16 Bakersfield Unpaved Road Dust (Residential) 

16 SOIL17 Taft Unpaved Road Dust 

17 BAMAJC Wood smoke emissions, Bakersfield Cordwood Using 

Majestic Fireplace 

35 STAGBC Stockton Agricultural (Wheat) Burning 

37 MOVES2 South Coast Motor Vehicle Emissions, MOVES-SS 

(NEAEWOB, WOT, TVMT) 

29 WHDIEC Wheeler High Station Diesel Truck Emissions 

30 MOTIBC Modesto Tire Fueled Power Plant Emissions 

27 SFCRUC Santa Fe Crude Oil Boiler Emissions 

39 CHCRUC Chevron Racetrack Crude Oil Boiler Emissions 

42 SCRRFC Stanislaus County Municipal Waste Fueled Power Plant 

Emissions 

51 AMSUL Ammonium Sulfate, Secondary Aerosol 

54 AMNIT Ammonium Nitrate, Secondary Aerosol 

56  NANO3 Sodium Nitrate, Reacted Marine Aerosol 

35 MARINE Primary Marine Aerosol 

61 LIME Primary Construction Emissions (Limestone) 

60  OC Secondary Organic Carbon 

Source Profiles Applied in 

the SJVAQS (Chow et. al., 

1990)  

• Because geological profiles 

(SOIL1, SOIL3, SOIL16, and 

SOIL17) were too collinear to 

be distinguished from one 

another, only a single profile of 

this source type had been used 

for SA of each daily PM2.5 

sample (Chow et al., 1990). 

The same was also true for 

vegetative burning profiles 

(BAMAJC and STAGBC), 

motor vehicle exhaust profiles 

(MOVES2 and WHDIEC), 

and oil combustion profiles 

(SFCRUC and CHCRUC).  

 



ARISTOTLE UNIVERSITY 

OF THESSALONIKI 

SCHOOL OF CHEMISTRY / ENVIRONMENTAL  

POLLUTION CONTROL LABORATORY 

 

 

 

 

 

 

  

• Resembling the original CMB analysis, RCMB was also applied for the SA of each 

ambient PM2.5 sample seperately, by using the EFWLS fitting method, the same fitting 

species, and the same source profiles (Ν = 18) that had been employed by Chow et al. 

(1990) for trial CMBs. 

 

• The performance measures, which were utilized for the automatic validation of 

successful convergences, included the absence of any negative values among estimates 

for source contributions, the fit indices R2 and χ2
red, and the T-stat ratios.  

 

• Similarly to Chow et al. (1990), % mass was included to the performance measures of 

RCMB only for those ambient PM2.5 samples, whose mass concentrations had been 

measured to be above 10 μg/m3, since lower values were within a few percent precision 

intervals of the PM2.5 mass measurements.  

 

• The rest of the performance measures were inspected manually after the end of each 

running session.  
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Sampling 

date  

Failures of 

convergence 

Negative  

estimate(s) 

Low 

R2  

High 

χ2 

High or low 

%mass  

Low Τ-Stat 

value(s) 

“Good 

Fits” 

20/06/88 26604 90474 50041 94648 11 351 14 

02/07/88 19299 127343 29068 84755 145 1483 50 

14/07/88 9447 197485 8079 44144 59 2927 2 

26/07/88 22534 131458 16667 88117 6 3025 336 

07/08/88 28313 113921 32654 84124 146 2943 42 

19/08/88 29145 122686 22126 86783 35 1303 65 

25/08/88 23712 153009 1794 81254 92 2215 67 

31/08/88 26226 108371 23204 102767 8 1422 145 

06/09/88 23977 125474 23986 86260 41 2345 60 

12/09/88 15393 157746 1825 83178 216 3732 53 

18/10/88 27657 114845 22072 96066 23 1457 23 

30/10/88 33434 92837 28560 106838 27 399 48 

11/11/88 15779 121004 21458 102106 N/A 1646 150 

17/11/88 2559 102699 116452 38646 N/A 1772 15 

23/11/88 24057 90142 19711 127474 0 679 80 

29/11/88 32508 88232 18742 122586 0 47 28 

05/12/88 28378 101358 18657 112737 0 828 185 

11/12/88 32806 84878 15775 127799 0 783 102 

17/12/88 31989 101186 18523 109331 36 767 311 

23/12/88 12138 111562 20573 115405 N/A 2440 25 

29/12/88 19058 109007 18647 113666 54 1649 62 

04/01/89 29828 92670 19337 119358 0 880 70 

10/01/89 21724 94830 18995 124377 0 2178 39 

16/01/89 32394 92731 17867 118081 0 742 328 

22/01/89 35384 72244 16458 137529 0 469 59 

28/01/89 31069 80933 13165 135573 0 1210 193 

03/02/89 1806 126134 120163 13564 N/A 464 12 

09/02/89 31621 85784 18999 123885 0 1768 86 

15/02/89 33264 88230 17141 122827 0 652 29 

21/02/89 30671 90817 19169 119865 0 1594 27 

23/03/89 20734 111295 20587 109017 N/A 447 63 

10/04/89 10355 135386 31377 81531 N/A 3295 199 

10/05/89 10743 114201 64800 64427 N/A 7913 59 

Summarization of the output 

of RCMB for the PM2.5 

Crows Data 

 
Apparently, almost all the sets of  

input data defined a plethora of 

over determined linear systems, 

converging to solutions that meet 

the diagnostic criteria set by the 

US EPA. 
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Best Fits of RCMB (Rank 1) for each ambient PM2.5 sample at Crows Landing 

 Date 20/06/88 02/07/88 14/07/88 26/07/88 07/08/88 19/08/88 25/08/88 31/08/88 06/09/88 12/09/88 18/10/88 

SOIL01     2.6                 

SOIL03                       

SOIL16   1.44   4.38 1.29 3.61 8.71 4.94 4.22     

SOIL17                       

BAMAJC   1.1         4.21 1.69   3.26   

STAGBC       2.51 1.8 2.69           

MOVES2 2.61 1.94   3.38 1.64 5.71 3.61 4.34 4.98   3.48 

WHDIEC     1.77                 

MOTIBC                       

SFCRUC       1.07       1.92       

CHCRUC                       

SCRRFC 3.55 1.23 4.59 2.56   2.45   4.91 4.25 17.15 15.73 

AMSUL 1.96 2.04   3.81 3.49 2.88 2.83 4.27 1.61 0.93 2.59 

AMNIT                     2.86 

NANO3 1.45 0.91   0.91 0.73 1.34 1.03 3.93 1.11 0.86   

MARINE                       

OC   1.94     1.57         6.6   

LIME                       

R2 0.88 0.97 0.84 0.97 0.93 0.97 0.98 0.98 0.95 0.93 0.93 

χ2
red 1.38 0.9 2.37 1.05 1.61 0.95 0.84 0.73 1.32 0.93 1.15 

% mass 85 77 77 88 76 78 77 87 83 83 87 

Fit Measure 0.8168 0.9478 0.6753 0.9364 0.7721 0.9331 0.9805 1.0749 0.8459 0.9465 0.8887 
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 Date 30/10/88 11/11/88 17/11/88 23/11/88 29/11/88 05/12/88 11/12/88 17/12/88 23/12/88 29/12/88 04/01/89 

SOIL01                       

SOIL03             0.67         

SOIL16 1.04 0.92       0.46   0.3       

SOIL17                       

BAMAJC 3.26 2.06 0.71 0.85 1.36 2.39 4.63 2.7 0.49 0.7 0.56 

STAGBC                       

MOVES2 4.5 2.08   1.66 2.23 4.58 3.82 2.13 1.05 1.3 1.4 

WHDIEC                       

MOTIBC                       

SFCRUC 0.42     0.71     0.59 0.31   0.29 0.28 

CHCRUC         0.11             

SCRRFC       1.82               

AMSUL 7.35 1.01 0.83 0.83 3.43 1.51 3.58 2.35 1.01 1.56 3.57 

AMNIT 6.15 1.28   6.59 16.42 13.12 28.87 9.27 3.35 4.99 12.77 

NANO3   1.02 1.17 0.86 0.49     0.76 1.03 0.7 0.65 

MARINE                       

OC           5.7 3.14 1.68       

LIME                       

R2 0.97 0.97 0.91 0.92 0.98 0.96 0.97 0.96 0.97 0.94 0.99 

χ2
red 0.87 0.63 0.48 1.97 0.37 0.9 1.03 1.15 0.41 1.14 0.26 

% mass 78 92 70 93 86 98 89 83 80 78 91 

Fit Measure 0.9661 1.1566 1.2329 0.7853 1.5165 1.0187 0.9431 0.8874 1.4047 0.8653 1.9333 

Best Fits of RCMB (Rank 1) Continued 

• It was also apparent that source profiles, which had not been resolved by 

the original CMB analysis, due to collinearity, such as BAMAJC and 

STAGBC, were estimable by the preference of RCMB for the one that 

maximizes Fit Measure.  
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 Date 10/01/89 16/01/89 22/01/89 28/01/89 03/02/89 09/02/89 15/02/89 21/02/89 23/03/89 10/04/89 10/05/89 

SOIL01                   0.98 0.51 

SOIL03           0.77     0.46     

SOIL16     0.36 0.26               

SOIL17   0.47                   

BAMAJC 1.27 2.29 2.36 2.78 0.41 1.34 2 1.42 0.57 1.02 0.41 

STAGBC                       

MOVES2 2.01 2.13 4.59 3.58   1.71 1.49 1.48 1.73 1.46   

WHDIEC         0.78             

MOTIBC                     0.05 

SFCRUC 0.44 0.75 0 0.77               

CHCRUC     0.31 0               

SCRRFC                   3   

AMSUL 1.43 1.78 3.61 6.17 0.54 3.46 2.93 2.38 1.34 1.3 1.2 

AMNIT 13.22 11.53 31.47 39.64 0.85 18.95 18.18 12.89 2.07     

NANO3   0.62   0.78 0.45 0.63 0.54 0.51 0.93 1.08 0.82 

MARINE     0.27               0.22 

OC   1.74   2.99     1.77 1.57       

LIME                       

R2 0.94 0.98 0.94 0.98 0.96 0.99 0.99 0.98 0.98 0.99 0.98 

χ2
red 1.12 0.53 1.59 0.58 0.21 0.22 0.23 0.44 0.43 0.23 0.28 

% mass 84 93 90 89 72 91 93 105 89 90 70 

Fit Measure 0.8925 1.2641 0.8222 1.1981 2.1715 2.1244 2.1014 1.4068 1.3967 2.0790 1.7698 

Best Fits of RCMB (Rank 1) Continued 2 

• Moreover, the temporal variation of these source contributions seemed to be 

reasonable, since wood smoke emissions (BAMAJC) had been expected to occur 

more frequently during the cold period, from fireplaces and woodstoves, while 

agricultural burnings (STAGBC) were common during the warm period, due to 

prescribed burns, set by farmers (Chow et al, 1990).  
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Average source contributions to ambient PM2.5 at Crows Landing 

• In contrast with the original CMB analysis, significant contributions were estimated 

by RCMB for municipal waste incineration, although Chow et al (1990) reported that 

contributions from such a source type were not detected in any ambient sample. 



ARISTOTLE UNIVERSITY 

OF THESSALONIKI 

SCHOOL OF CHEMISTRY / ENVIRONMENTAL  

POLLUTION CONTROL LABORATORY 

Detailed output of RCMB for the ambient PM2.5 sample of 02/07/88 

Rank 1 2 3 4  5 6 7 8 9 10 

SOIL01     1.35   1.47         2.10 

SOIL03                     

SOIL16 1.44 1.35                 

SOIL17           1.28   1.39     

BAMAJC 1.10     1.24 1.40     1.16 1.46 1.63 

STAGBC   0.43 0.60     0.43         

MOVES2 1.94 2.03 1.86 1.67 1.76 1.97 1.86 1.87 2.25 1.83 

WHDIEC                     

MOTIBC                     

SFCRUC                     

CHCRUC                     

SCRRFC 1.23 1.50 1.74 4.38 1.44 1.87 4.88 1.55 4.33   

AMSUL 2.04 2.00 1.98 1.80 2.01 1.97 1.78 2.00 1.77 2.20 

AMNIT                     

NANO3 0.91 0.90 0.90 0.82 0.90 0.90 0.81 0.90 0.81 0.93 

MARINE                     

OC 1.94 2.19 2.10 1.67 1.79 2.18 2.06 1.92   1.79 

LIME                     

% mass  77 76 77 84 79 77 83 79 77 76 

χ2
red 0.9 0.9 1.01 1.15 1.18 1.27 1.31 1.32 1.23 1.57 

R2 0.97 0.96 0.96 0.92 0.95 0.95 0.9 0.95 0.9 0.94 

Fit Measure 0.9478 0.9448 0.9066 0.8797 0.8633 0.8352 0.8312 0.8301 0.8297 0.7793 
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Detailed output  -Continued 

Rank 11 12 13 14  15 16 17 18 19 20 
SOIL01     1.05               
SOIL03                     
SOIL16   1.37                 
SOIL17       1.23 2.09           
BAMAJC 1.25       1.25   1.47       
STAGBC                   0.72 
MOVES2 1.70 2.08 1.96 2.03 1.99 1.89 2.30   1.97   
WHDIEC               1.79   1.58 
MOTIBC               0.15     
SFCRUC                     
CHCRUC                     
SCRRFC 4.37 1.83 2.75 2.32   4.88 4.32 5.12 5.02 5.27 
AMSUL 1.76 1.98 1.91 1.94 2.19 1.75 1.74 1.72 1.77 1.75 
AMNIT 0.61         0.61 0.59       
NANO3   0.90 0.87 0.89 0.93     0.82   0.82 
MARINE                     
OC 1.65 2.29 2.19 2.26 1.99 2.04   2.04 1.99 1.87 
LIME                     

% mass  83 76 78 78 76 81 76 85 78 88 

χ2
red 1.7 1.64 1.75 1.78 1.79 1.76 1.74 2.26 1.93 2.53 

R2 0.88 0.93 0.9 0.91 0.93 0.86 0.86 0.87 0.83 0.86 

Fit Measure 0.7663 0.7657 0.7524 0.7501 0.7499 0.75 0.73273 0.72193 0.7115 0.70926 
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Detailed output –Continued 2 

Rank 21 22 23 24  25 26 27 28 29 30 
SOIL01   1.51                 
SOIL03                     
SOIL16                     
SOIL17           1.43         
BAMAJC 1.61 1.42 1.41     1.17       2.04 
STAGBC             0.72   0.85   
MOVES2   1.82       1.93         
WHDIEC     1.98 1.74 1.80   1.59 2.58     
MOTIBC 0.14   0.14   0.15     0.15     
SFCRUC                     
CHCRUC                     
SCRRFC 4.58 1.35 4.69 6.38 5.10 1.46 5.26 5.38 5.42 5.44 
AMSUL 1.80 1.91 1.71 1.70 1.69 1.90 1.73 1.67 1.81 1.79 
AMNIT   0.63     0.65 0.63 0.64       
NANO3 0.82   0.82 0.80       0.81 0.82 0.81 
MARINE                     
OC 2.28 1.76   1.93 2.04 1.89 1.87   2.58 2.00 
LIME                     

% mass  82 76 78 92 83 76 86 77 84 88 

χ2
red 2.38 2.43 2.38 2.95 2.72 2.55 2.99 2.48 2.8 3.07 

R2 0.87 0.91 0.87 0.81 0.85 0.9 0.83 0.85 0.83 0.81 

Fit Measure 0.70453 0.69238 0.69149 0.68659 0.68401 0.68375 0.67557 0.67371 0.67328 0.67254 
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Detailed output –Continued 3 

Rank 31 32 33 34  35 36 37 38 39 40 
SOIL01   1.17 1.07               
SOIL03                     
SOIL16             0.96       
SOIL17               1.26     
BAMAJC         1.62 1.83       1.41 
STAGBC 0.74 0.99         0.89       
MOVES2     2.01         2.09     
WHDIEC 2.26 1.58       1.69 1.68   1.78 1.99 
MOTIBC       0.15 0.14       0.15 0.14 
SFCRUC                     
CHCRUC                     
SCRRFC 5.48 2.37 2.69 5.44 4.56 5.55 2.64 2.24 5.31 4.67 
AMSUL 1.71 1.92 1.85 1.77 1.77 1.72 1.90 1.87 1.71 1.69 
AMNIT     0.61   0.64     0.62   0.64 
NANO3 0.82 0.90   0.81   0.81 0.90       
MARINE                     
OC   2.03 2.17 2.88 2.28   2.06 2.24 2.02   
LIME                     

% mass  80 80 76 81 80 85 80 75 80 77 

χ2
red 2.64 3.1 2.64 2.78 2.91 3.03 3.25 2.76 2.88 2.89 

R2 0.83 0.88 0.86 0.83 0.85 0.81 0.87 0.86 0.83 0.85 

Fit Measure 0.67118 0.66836 0.66594 0.66577 0.66482 0.66202 0.66159 0.65977 0.65771 0.65292 
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Detailed output –Continued 4 

Rank 41 42 43 44  45 46 47 48 49 50 
SOIL01             1.17 1.16   1.43 
SOIL03                     
SOIL16                 0.81   
SOIL17                     
BAMAJC         1.63           
STAGBC 0.70 0.85   0.74     1.15   1.03 0.77 
MOVES2                     
WHDIEC 1.58   2.59 2.26       1.82   1.70 
MOTIBC     0.15   0.14 0.16   0.14     
SFCRUC                     
CHCRUC                     
SCRRFC 5.50 5.42 5.36 5.48 4.73 5.43 2.45 2.59 3.12 1.43 
AMSUL 1.74 1.78 1.65 1.69 1.79 1.75 1.97 1.88 1.93 1.85 
AMNIT   0.64 0.64 0.64   0.64       0.66 
NANO3             0.90 0.88 0.88   
MARINE                   0.43 
OC 1.85 2.57     2.25 2.88 2.74 2.25 2.77 2.16 
LIME                     

% mass  83 82 76 79 77 79 76 78 77 76 

χ2
red 3.14 3.21 2.88 3.05 3.04 3.18 3.47 3.86 3.57 3.7 

R2 0.8 0.8 0.82 0.81 0.83 0.81 0.86 0.86 0.84 0.89 

Fit Measure 0.6506 0.64484 0.64247 0.64161 0.64088 0.6383 0.63363 0.63349 0.62949 0.63941 
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• From the illustrated test case it becomes evident that a typical set of input data, 

gathered for CMB modeling, can often define a plethora of least squares systems, for 

which standard LS fitting methods converge successfully, to solutions that meet 

common statistical criteria. 

 

• The above test case also confirms the well-established fact (Cheng and Hopke, 1986) 

that two different solutions, both having acceptable performance measures, can often 

be found for the same CMB problem by two different people. 

 

• RCMB minimizes personal judgment, because it is capable of leading straight-

forwardly to the best-fit combination of source profiles that can possibly be obtained 

by a set of input data, from a statistical point of view. 

 

• Nevertheless, RCMB, like any other receptor model, is rather explanatory than 

predictive, thus, it should not be considered as a statistical black box.  

Conclusions 
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Thank you for your attention! 
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