

European Research Group on Mobile Emission Sources

Presentation outline

- The ERMES Group
 - Mission
 - > Structure
 - Research coordination
- Activities
 - Measurements
 - > Modelling
- Next ERMES Meeting

The ERMES Group (1/2)

ERMES is the European network that brings together transport emission modellers and researchers, funding agencies, industry representatives and other stakeholders, to support cooperative research in the field of transport emission modeling

More than 50 organisations involved

Participants from 23 Countries

http://www.ermes-group.eu/

The ERMES Group (2/2)

ERMES emerged in 2009 from the collaboration of two groups engaged in emission modelling since early 2000: the DACHNLS group (headed by INFRAS and TUG) and the EEA/JRC/LAT/Emisia group, responsible for the development of the HBEFA and COPERT models respectively

- Coordinated and partly funded by JRC since 2009
- Primary interface between modellers and EC
 - Impact on European legislation (e.g. the regulations on CO2 emission performance standards (EC) 443/2009 and 510/2011, the air quality directive 2008/50/EC)

First focus on road transport, others to follow

Mission

✓ to **coordinate research** and measurement programmes for the improvement of transport emission inventories in Europe

to become a permanent network of mobile emission modellers and model users

✓ to become an international
reference point for mobile
emissions modelling and related
topics in Europe

5

Structure of ERMES

Executive Board

M. Cristina Galassi

Stefan Hausberger

Mario Keller

Leonidas Ntziachristos

Ake Sjodin

Swedish Environmental Research Institute

Norbert Ligterink **TNO** innovation for life

Heinz Steven

FAIRMODE WG2 Technical Meeting Kjeller - April 28th-29th, 2014

Research coordination

Work Programme 2014 (1/2)

	#	Acronym	Issue	Coord.	WG
	01	DBbag	ERMES bag database from lab tests	INFRAS	AVL-MTC, CASANZ, EMISIA, HS-DAC, INFRAS, JRC, LAT, TUG, TNO
	02	DMpems	ERMES PEMS database	JRC	JRC
	03	EFPC	Emission factors for PC	TUG	BASt, IFEU, INFRAS, HS DAC, TNM, TUG
	04	EFLCV	Emission factors for LCV	TUG	IFEU, INFRAS, HS DAC, TNM, TUG
	05	EFHDV	Emission factors for HDV	TUG	TNM, TUG, VTT
	06	EFPTW	Emission factors for PTW	LAT	
	07	EFalt	Emissions from alternative fuels	AVL-MTC	AVL-MTC, SSC, VTT
	08	EFhyb	Emissions and energy consumption from PC and LCV hybrids	EMISIA	EMISIA, VTT
	09	EFgdi	Emission factors from Gasoline Direct Injection	LAT	TUG

ermes

Work Programme 2014 (2/2)

	#	Acronym	Issue	Coord.	WG	
	10	EFnonreg	Non-regulated pollutants	IFSTTAR	IFSTTAR, VTT	
	11	coldP	Cold Start: LDV	EMPA	ΕΜΡΑ	
	12	coldD	Cold Start: HDV and LDV diesels	TUG	TUG	
	13	coldPTW	Cold Start: PTW	TUG	INFRAS, JRC, TNO, LAT	
	15	aux	Auxiliaries	TUG	TUG	
	16	insta	Tools for correction of instantaneous test results (testing phase)	TUG	LAT, JRC, TUG, VTT	
	17	TS	Traffic situations and drive cycle allocation	HS DAC	HS DAC, INFRAS, JRC, TUG, VTI, WSP	
	21	dur	Durability	INFRAS	IIASA, TNO, (REMOTE SENSING GROUP)	
l	22	retro	Retrofits	KING'S COLLEGE	TNM, TUG, TUV	
	24	invdata	Activity, stock data and projections	EMISIA	EMISIA, INFRAS, IVL, RICARDO, IFSTTAR	

ermes

Measurements (1/5)

Harmonization and data sharing

ermes

Source: INFRAS

Measurements (2/5)

Emission factors from LDV

Measurements (3/5)

Emission factors from HDV

Source: Technical University of Graz

ermes

Measurements (4/5)

Emission factors from busses

Source: Technical University of Graz

Measurements (5/5)

ERMES test cycle: a modelling cycle

- Produces instantaneous engine data useful for engine mapping (better coverage of operating points than NEDC)
- Allows flexible planning for laboratories thanks to its short duration (~24 min)

Modelling (1/3)

ERMES oversees the development of the leading vehicle emission models in Europe such as:

COPERT: main road transport emissions model of the EMEP/EEA Atmospheric Emissions Inventory Guidebook, used by several MS in official reporting of national emission inventories

HBEFA: Model of choice in DACH-S group of countries. Developed by TU Graz and INFRAS

VERSIT+: Model of choice in NL. Developed by TNO

Modelling (2/3)

Emission models usage in Europe

Modelling (3/3)

	COPERT 4	HBEFA 3.1	VERSIT +	NEMO	PHEM
Geographical scale	Broad	From street level up	From street level up	From street level up	Single vehicle to street level
Emission factors	Based on average speed	Based on traffic situations	Based on traffic situations (road types, speed limits, degrees of congestion)	Based on calculation of driving resistance for avg. traffic situations	Based on instantaneous vehicle speed trajectories and engine emission maps
Pollutants	Regulated + CO ₂ , FC, CH ₄ , N ₂ O, NH ₃ , SO ₂ , heavy metals, PAHs, POPs, NMVOC speciation	Regulated + CO ₂ , FC, NO ₂ , CH ₄ , N ₂ O, NH ₃ , SO ₂ and PN	Regulated, CO ₂ , NO ₂ , PM2.5, EC, PAH, PM wear (tyre, brake, road surface)	Regulated + CO ₂ , FC, NO ₂ , CO ₂ and PN	Regulated + CO ₂ , FC, NO ₂ , CO ₂ and PN
Typical applications	Large scale inventories and assessment of measures	Inventories, assessment of measures (large and medium scale)	Inventories, assessment of measures (large and medium scale)	Inventories, assessment of measures (based on road networks)	Calculation of emission factors for various traffic situations, driving styles, and vehicle technologies

COPERT Approach

Emission factors from interpolation of measurements as a function of average speed

- Straightforward and easy to obtain at national level
- Lacks sensitivity as temporal/spatial resolution increase

- The methodology is describe in the EEA emission guidebook
- A single free software package is available at <u>www.emisia.com</u>

HBEFA Approach

Emission factors are the weighted average of the PHEM model results

- PHEM is calibrated on vehicle measurements
- PHEM runs for 276 individual traffic situations classified by: road type; level of service; speed limit.
- The Software is available at <u>www.hbefa.net</u>
- Software database allows selection of emission factors

Source: INFRAS

FAIRMODE WG2 Teo Kjeller - April 28^{tt}

VERSIT+ Approach

- <u>Velocity-and-acceleration</u> based
- <u>Statistical</u> analyses:
 - sufficient data per vehicle
 - sufficient vehicles per category
 - no reliance on engine maps, etc.: <u>data focussed</u>
- Shift towards <u>on-road testing</u> (PEMS) is in progress
 - Euro-V HD emission factors based on PEMS since 2010
- 10+1 parameters per vehicle category (1 for cold start)
 - 20 parameters for heavy duty (to cover payload)

• <u>Emission factors published for</u> <u>national usage</u>, changes reported annually on March 14th

Next ERMES Meeting

ERMES Plenary Meeting

September 17th, 2014 Graz, Austria

Jointly organized with

To receíve latest updates, please subscríbe to <u>ERMES Newsletter</u>

TAP2014 Conference

20th International Transport and Air Pollution Conference 2014 September 18th-19th, 2014 Graz, Austria

http://www.tapconference.org/

Join ERMES!

Following its mission, ERMES is an **OPEN NETWORK** and anyone is welcome to sign up for the Contact Group

http://www.ermes-group.eu/web/contacts

Thank you for your attention! www.ermes-group.eu

Comparison of road traffic emission models in Madrid (Spain)

R. Borge at al., Atmospheric Environment 62 (2012) 461, 471

Independent study - not coordinated by ERMES on two of the ERMES models

ermes

proaches to estimate road traffic emissions in Madrid (Spain): the ilculate Emissions from Road Transport (COPERT4 v.8.1) and the for Road Transport (HBEFA v.3.1), representative of the 'average-'model types respectively. The input information (e.g. fleet tres travelled, traffic intensity, road type, etc.) was provided by the the Madrid City Council along with observations from field campaigns. puted for nearly 15 000 road segments distributed in 9 management

areas covering the Madrid city and surroundings. Total annual NO_x emissions predicted by HBEFA were a 21% higher than those of COPERT. The discrepancies for NO₂ were lower (13%) since resulting average NO₂/NO_x ratios are lower for HBEFA. The larger differences are related to diesel vehicle emissions under "stop & go" traffic conditions, very common in distributor/secondary roads of the Madrid metropolitan area.

In order to understand the representativeness of these results, the resulting emissions were integrated in an urban scale inventory used to drive mesoscale air quality simulations with the Community Multiscale Air Quality (CMAQ) modelling system (1 km² resolution). Modelled NO₂ concentrations were compared with observations through a series of statistics. Although there are no remarkable differences between both model runs, the results suggest that HBEFA may overestimate traffic emissions. However, the results are strongly influenced by methodological issues and limitations of the traffic model. This study was useful to provide a first alternative estimate to the official emission inventory in Madrid and to identify the main features of the traffic model that should be improved to support the application of an emission system based on "real world" emission factors.