

MQO

P. Thunis, D. Pernigotti, M. Gerboles (JRC)

> A formulation of the MQO based on observation uncertainty: *RMSE* MQO_{hourly/daily} RMS₁₀

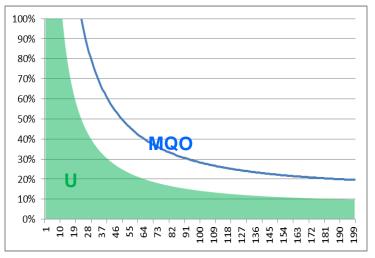
- $MQO_{yearly} = \frac{BIAS}{C}$
- > Assumptions are made to derive a simple formulation for the observation uncertainty (e.g. data reference year)

 \succ MQO are currently available for NO2 (h/y), O3(8h) and PM10 (d/y)

> Testing the robustness of the formulation

- Extended datasets
- Further tests on specific hypotheses

> Extending the formulation to new species

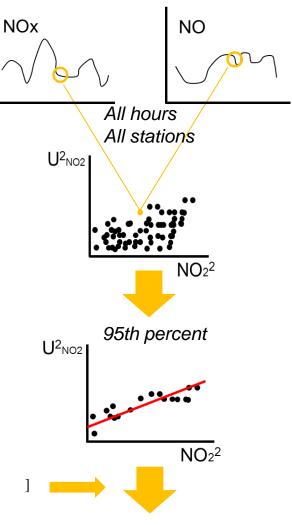

"u" formulation

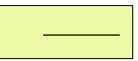
$$u^{2} = u_{RV}^{2} (1 - \alpha) C^{2} + u_{RV}^{2} \alpha R V^{2}$$

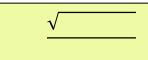
$$u^{2} = \frac{u_{RV}^{2}(1-\alpha)C^{2}}{N_{p}} + \frac{u_{RV}^{2}\alpha RV^{2}}{N_{np}}$$

- \mathcal{U}_{RV} Uncertainty at the reference value
- α Degree of proportionality
- *RV* Reference value (free user choice)
- N_p, N_{np} Yearly fitting coefficients

Concentration (ug/m3)

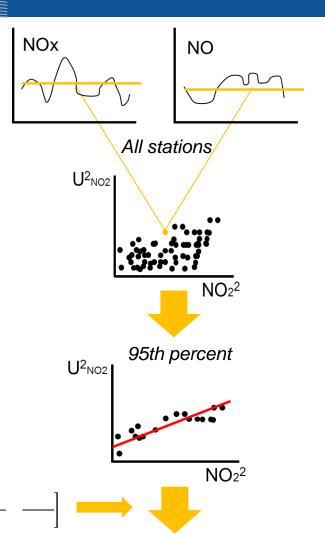

NO2 robustness (1)

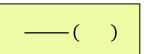

European Commission

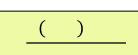

Hourly NO2: GUM approach

		Hourly v	alues, u	Annual	values, u	D.%rand	1
		Min	Max	Min	Max	- D,%rand	3
	NOx Zero(0)	2/3%	2/3 [%]	2/(0.5x4x3)½	2/(0.5x2x3) ¹⁶	R, R; R, R, 50%	p
00,01	NO Zero(0) NOx/NO Zero, (0)	1/3%	1/3%	1/(0.5x4x3)½	1/(0.5x2x3) [%]	R, R; R, R, 50%	p
00	Repeatability at zero	0.1	1/3%	0.1/(24x3) [%]	1/(4x3)%	N,R; R, R, 100%	p
	Long term zero drift	0.58	4/3%	0.58/(0.5x24) [%]	4/(0.5x24x3) [%]	N, R; N,R, 50 % ⁽ⁱ⁾	p
_	% of Span (200,750)	1%	2.5%	1%	2.5%	N,N; N, N, 0 %	1
	% of Span, (200,750)						I
5	Repeatability	0.1	0.75%	0.1/(24)%	0.75%/(24)%	N, N; N,N, 100%	I
	Long term span drift	1.44%	5%/3%	0.29%	5%/(0.5x24x3) [%]	N,R; N, R, 50%	1
	Repeatability	0.1	0.75%	0.1/(Neff) [%]	0.75%/(Neff) [%]	N, 100%	1
	Lack of Fit, linearity	5/3%	Max(5,4%)/3 [%]	0.18%	Max(5,4%)/N _{eff} 3	R, 100 %	p
ALC: NO.	Pressure change	0.0	06	C	.01		1
	Temperature	0.	7	0.18			1
Š	Voltage change	0.0	02	0.0			1
	Sampling ⁽ⁱⁱ⁾	2%	/3 [%]	2%/(0.5xNerrx3) ^{%(iii)}		N, 50 %	1
	H_2O	2%+2%.(14/9)/6 [%]	4%+4% (14/9)/6 [%]	2% ^(iv)	4%	Mean Tr	1
	PAN ^(v)	1/6%	7/6%	0.2	1		1
Š	CO2	0.3	35	0	.13		1
NOxr	NH3 & NHO3	0	0	0	0		1
	HNO_2	0.5+2	.2/6 [%]		0.5	Mean T	1
ff ((0.95,1)	0.5 %	2%	0.5 %	2%	N, 0 %	1
Missing data (90%)				0%	0.5%		1

()[()

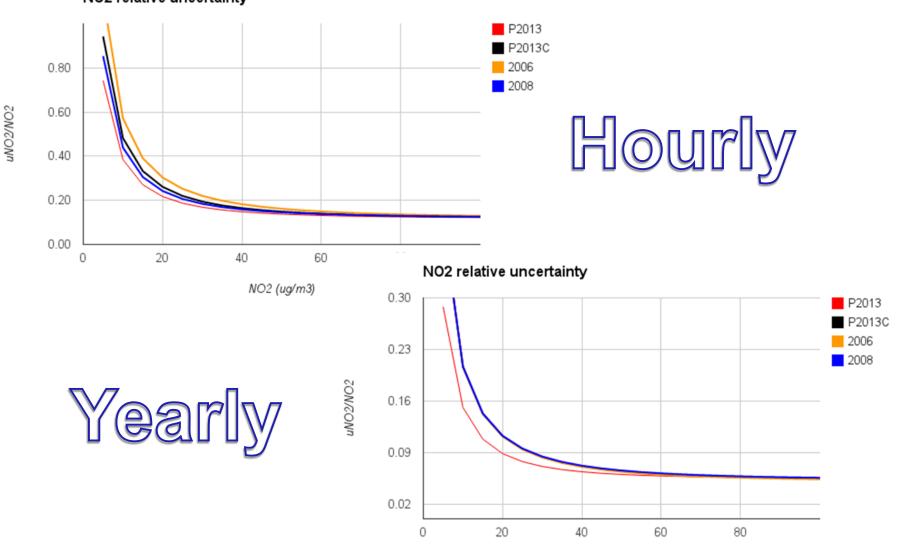

NO2 robustness (II)


European Commission


()

Yearly NO2: GUM approach

		Hourly	values, u	Annual	values, u	D,%rand	T
	NOx Zero(0)	Min 2/3 [%]	Max 2/3 [%]	Min 2/(0.5x4x3)½	Max 2/(0.5x2x3) [%]	R, R; R, R, 50%	y pn
b_a, b_I	NO Zero(0) NOx/NO Zero, (0)	1/3%	1/3%	1/(0.5x4x3)½	1/(0.5x2x3) [%]	R, R; R, R, 50%	pn
p_o ,	Repeatability at zero	0.1	1/3%	0.1/(24x3) [%]	1/(4x3)%	N,R; R, R, 100%	pn
	Long term zero drift	0.58	4/3%	0.58/(0.5x24) [%]	4/(0.5x24x3) [%]	N, R; N.R, 50 % ⁽ⁱ⁾	pn
_	% of Span (200,750)	1%	2.5%	1%	2.5%	N,N; N, N, 0 %	р
p_i	% of Span, (200,750) Repeatability Long term span drift	0.1 1.44%	0.75% 5%/3 [%]	0.1/(24) [%] 0.29%	0.75%/(24) [%] 5%/(0.5x24x3) [%]	N, N; N,N, 100% N,R; N, R, 50%	p p p
	Repeatability	0.1	0.75%	0.1/(Neff) [%]	0.75%/(N _{eff}) [%]	N, 100%	р
	Lack of Fit, linearity	5/3%	Max(5,4%)/3 [%]	0.18%	Max(5,4%)/Neff3	R, 100 %	pn
NONO,	Pressure change Temperature Voltage change Sampling ⁽ⁱⁱ⁾	0 2%	.06 0.7 .02 6/3 [%]	C	.01 0.18 0.0 Nemx3) ^{%(iii)}	N, 50 %	n n p
	H_2O	2%+2%.(14/9)/6%	4%+4% (14/9)/6 [%]	2% ^(iv)	4%	Mean Tr	р
NOx	PAN ^(v) CO ₂	1/6%	7/6%	0.2	1		n n
N	NH3 & NHO3 HNO2		0 2.2/6 [%]		0 0.5	Mean T	n n
eff	(0.95,1)	1) 0.5% 2% 0.5% 2%		N, 0 %	р		
Mis	sing data (90%)			0%	0.5%		р



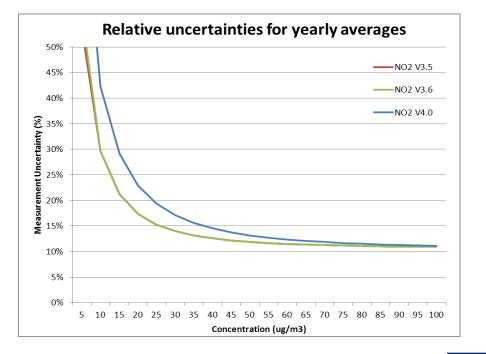
NO2 robustness (

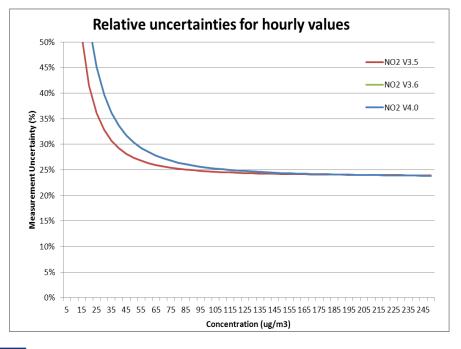
NO2 relative uncertainty

NO2 (ug/m3)

NO2 robustness (

European

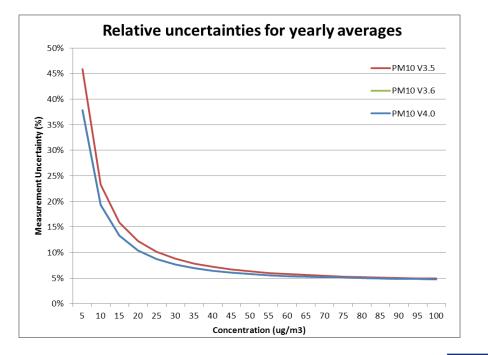

Commission

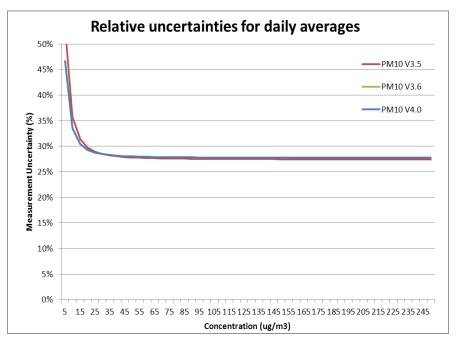


	k	UrLV	alpha	LV	Np	Nnp
NO2 V3.5	2	0.12	0.02	200	4.7	6.7
NO2 V3.6	2	0.12	0.04	200	5	12
NO2 V4.0	2	0.12	0.04	200	5.2	5.5

	k	UrLV	alpha	LV
NO2 V3.5	2	0.12	0.02	200
NO2 V3.6	2	0.12	0.04	200
NO2 V4.0	2	0.12	0.04	200

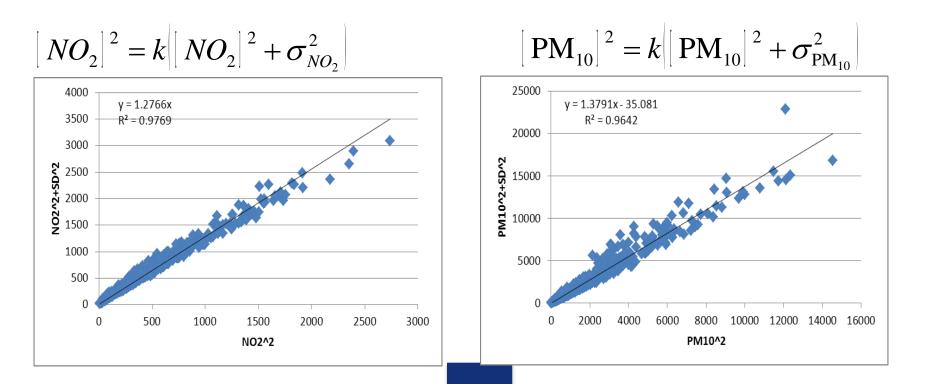
PM10 robustness


European Commission

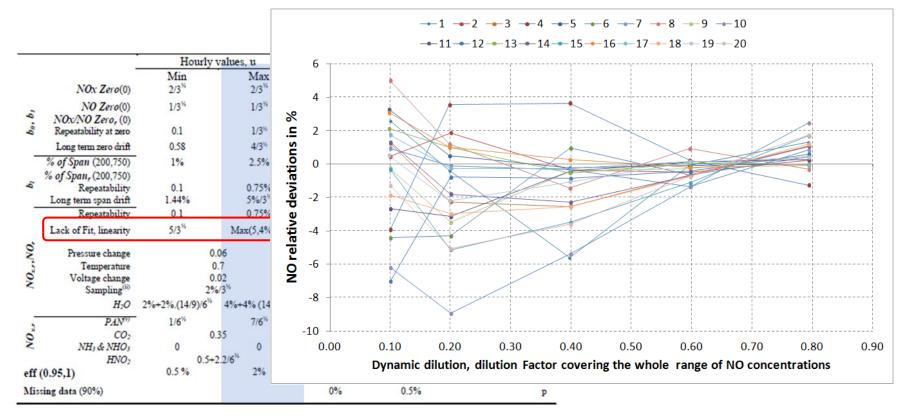

Yearly

	k	UrLV	alpha	LV	Np	Nnp
PM10 V3.5	2	0.139	0.027	50	40	1
PM10 V3.6	2	0.14	0.018	50	40	1
PM10 V4.0	2	0.14	0.018	50	40	1

	k	UrLV	alpha	LV
PM10 V3.5	2	0.139	0.027	50
PM10 V3.6	2	0.14	0.018	50
PM10 V4.0	2	0.14	0.018	50

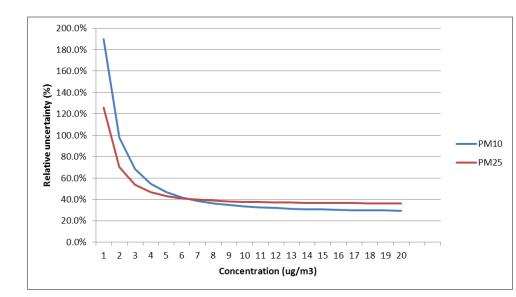


Linearization of the standard deviation term


$$u\left|\overline{C}\right| = u^{RV} \sqrt{\frac{\left|1-\alpha\right|\left|\overline{C}^{2}+\sigma^{2}\right|}{N_{p}^{*}} + \frac{\alpha RV^{2}}{N_{np}}} \cong u^{RV} \sqrt{\frac{\left|1-\alpha\right|k\overline{C}^{2}}{N_{p}^{*}} + \frac{\alpha RV^{2}}{N_{np}}} \cong u^{RV} \sqrt{\frac{\left|1-\alpha\right|\overline{C}^{2}}{N_{p}} + \frac{\alpha RV^{2}}{N_{np}}}$$

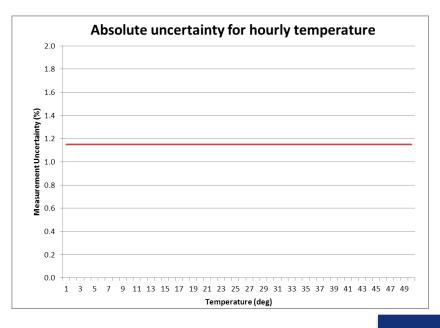
Robustness of the assumptions (II)

Commission


Linearity of NO2 automatic analysers check of the randomness of the linearity deviations

PM2.5

- Based on 140 days of gravimetric measurements (JRC inter-comparison exercise)
- No significant results for TEOM and beta-ray (not enough measurements!)



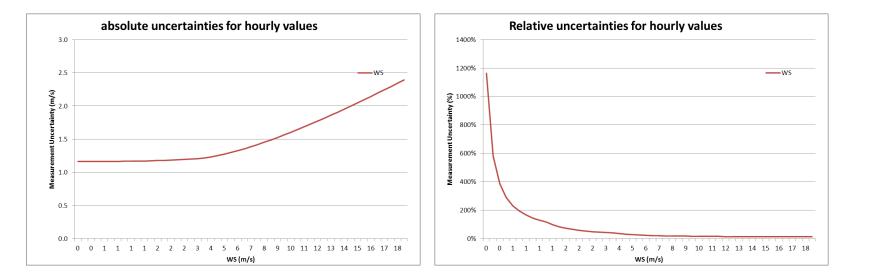
	RV	UrRV	alpha
PM10	50	0.14	0.018
PM2.5	25	0.18	0.018

Temperature

- Instrument uncertainty is extremely low (0.1 degree)
- Shield structure leads to larger error around one degree (Leroy 2002)
- Assumption made: equi-probable uncertainty (rectangular distribution) leading to u=0.57 C

	RV	UrRV	alpha
TEMP	25	0.023	1

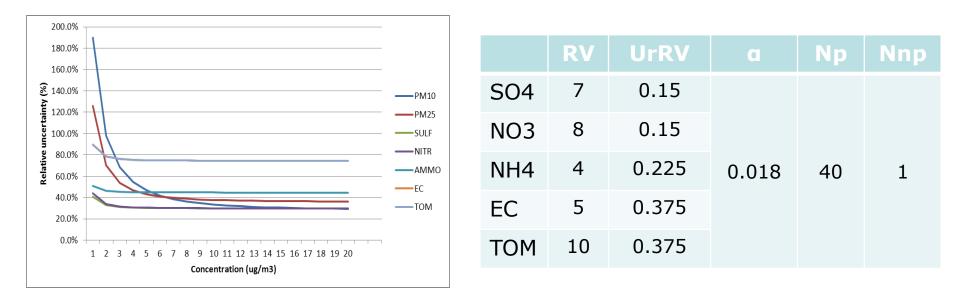
Extension to new species (III)


Wind-speed

	RV	UrRV	alpha
TEMP	5	0.13	0.8

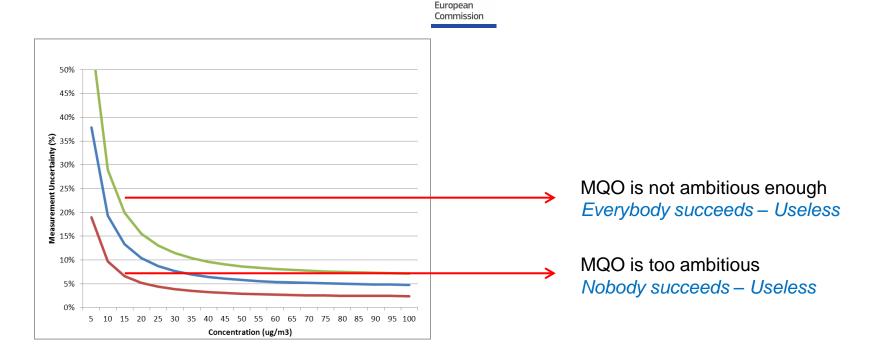
- > Difficulty to use real datasets
- Assumption WMO taken as basis (0.5 fixed below 5 m/s and proportional 10% above.

European Commission


> In addition: equi-probable 0.5 m/s due to integer rounding

PM components

- > RV and urRV from expert judgments
- > Alpha, Np and Nnp similar to PM10 and PM2.5



NO2 and PM10 MQO seem to be robust as well as underlying assumptions

> A new MQO is available for testing (PM2.5)

Other MQO (WS, TEMP, PM components) have been derived for other projects. Of interest to FAIRMODE?

Conclusions (II)

- What is important is to relate the model error to the observation uncertainty and assume a realistic functional relationship (U)
- Ways exist to tune the MQO to an adequate compromise in terms of stringency (coverage factor (K), max. vs. mean uncertainty...)