

Spatial representativeness and station classification

maîtriser le risque pour un développement durable

Local assessment of station representativeness based on sampling surveys and (where possible) geostatistical data analysis

- European/national scale: on-going studies on station classification and data quality for model evaluation and air quality mapping
 - ✓ Classification according to Joly and Peuch methodology (2012), comparison with AirBase classification
 - ✓ Detection of outliers

Introduction

Laboratoire Central de Surveillance de le Qualité de l'Air

- Main criterion: concentration difference with respect to the station measurement
- For a station S_0 located in x_0 , a given pollutant (ex: NO₂), a given concentration variable *Z* (ex: annual mean) and a given period (ex: one year),
 - x is considered as part of the representativeness area of S₀ if:

 $|Z(x)-Z(x_0)|<\delta$

- $\delta~$: threshold in $\mu\text{g/m}^3$
- Method:
 - Z(x) is estimated from sampling data and auxiliary variables: external drift kriging + statistical correction along roads.
 - The estimation uncertainty is taken into account by considering the probability η of wrongly including a point x in the representativeness area of S₀:

Modified condition for representativeness:

$$|Z^*(x) - Z(x_0)| < \delta - \sigma_k(x) * q_{1-\frac{\eta}{2}}$$

Kriging standard deviation Quantile of the normal distribution

• Methodology applicable on the urban scale

Sampling points: several periods during the year 2009

Naprof Troyes Year (2009 Representativeness threshold: 10µg/m3 Probability threshold: 10%

Representativeness area for site 14033

Estimation map of NO2 annual mean concentrations: kriging with NOx emissions as external drift

Map of Troyes Year 2009 Representativeness threshold 10/9/m3 Probability threshold 10/9 14031 Suppl overla criter Retain minin conce

Representativeness

area for site 14031

Suppression of the overlap. Different criteria tested. Retained criterion: minimum concentration difference Map of Troyes Year 2009 Representativeness threshold 10% Probability threshold 10%

⇒ Partly redundant information. 14033: the most suitable for comparison with large scale **CERIS** modelling results.

Kriging standard deviation

• Remarks

- > Application limited by the possibility of conducting dense sampling campaigns.
- Methodology mostly adapted to NO₂ or benzene annual, seasonal or monthly average concentrations.
- Requires information on the uncertainty of the concentration map.
- To investigate: how could the methodology be extended to other types of spatial estimates and wider spatial scales?

Representativeness of PM₁₀ monitoring sites: feasibility study of an experimental approach

Ex: City of Belfort, PM₁₀ measurement campaign around a traffic site (Octroi). Campaign conducted in collaboration with ATMO Franche-Comté, February 2011

Gravimetric measurements with DA-80 samplers along the main roads and at increasing distances from the station

Comparison of time series \rightarrow qualitative assessment of spatial representativeness (in terms of concentration and daily exceedances)

Station classification

□ Station classification

To qualify monitoring sites on a wider scale

Possible application for model evaluation and air quality mapping

- Study on national scale (LCSQA, 2012)
 - Classification through principal component analysis based on environmental parameters (terrain height, population density, land cover, NO_x emissions from traffic) and average concentration data (ratio NO/NO₂, PM₁₀/NO₂)
 - ✓ The stations split into five groups which can be interpreted in relation to the environment (urban, agricultural, forest...) and emission sources.

Study on European scale (ETC/ACM, 2012 & 2013)

Station classification

15 E

- Classification based on the temporal variability of concentrations: diurnal cycle, weekend effect, high frequency variability. AirBase type of area and type of station are used as a priori information in the classification process. Methodology developed by Joly and Peuch (2012).
- Underlying idea: spatial representativeness and temporal variability are linked.
- ✓ Application of the methodology to AirBase v6 and update with AirBase v7. Report and results available on EIONET website. Reflection on regular update within MACC project
- Pollutant specific classification, from 1 (rural behaviour) to 10 (behaviour mostly influenced by urban traffic)
- Identification of specific situations referred to as « outliers » that require further investigation

Classification of PM₁₀ monitoring stations according to Joly & Peuch (2012) methodology

Station classification

Use of station classification in model evaluation and air quality mapping

- Currently : selection of stations based on AirBase classification (type of area and type of station) and local expertise
- On-going investigations on the use of Joly & Peuch methodology for air quality mapping :

Comparison of different selections of stations for air quality mapping (observations + CHIMERE combined in an external drift kriging)

Study carried out on the European scale, O_3 and PM_{10}

Stations split into two sets:

1/3 of stations randomly taken out from the different Joly & Peuch classes: used as independent validation stations in all the tests Different selections of stations taken from the remaining 2/3: used as input in the kriging -background stations -stations classified as1to 3 -stations classified as1to 4 - (...)

- stations classified as1to 10

Computation of performance indicators by validation station and one average by class

Detection of outliers

- Preliminary study
 - ✓ Tests performed on AirBase timeseries
 - ✓ Adjustment of a method studied by Gherarz et al. (ETC/ACM 2011)
 - ✓ Application of a moving window filter (parameters adjusted for each pollutant):

Detection of outliers

- Support to French local AQ monitoring networks interested in better characterizing station representativeness
- Classification according to Joly and Peuch methodology (2012) :
 - ✓ Get feedback from data providers, e.g. on the stations identified as « outliers » in ETC/ACM 2013 study.
 - \checkmark Update of the classification to include more stations.
- Evaluation of CTMs:
 - ✓ Definition of a validation strategy taking the spatial distribution and the classification of stations (AirBase, Joly & Peuch) into account.
 - ✓ Analysis of the model skill scores as a function of the classification. Focus on the model performance for the stations identified as "outliers".
- > Mapping:
 - ✓ Detection of outliers : operational implementation for near-real-time data.
 - Impact of the selection of stations used in the mapping on the quality of the final maps.

Outlook