

Evaluation of air quality forecasts CCA-WG1

Frédérik Meleux

Institut National de l'Environnement Industriel et des Risques

CCA WG1: Forecasting

WG1	WG2	WG3	WG4			
Assessment	Emissions	Source App.	Planning			
Lead: VITO Co-lead: JRC	Lead: (NILU) Co-lead: (U Madrid)	Lead: JRC	Lead: U Strasbourg Co-lead: JRC			
Benchmarking (Methodology)						
Guidelines & Guidance						
Capacity Building and communication						
	Spatial Represent					
	Forecasting	(INERIS)				
\wedge		\wedge	\wedge			

14:00-15:00	WG1 – CCA: Forecasting		WG1
14:00-15:15	Introduction & Evaluation of MACC forecast	F. Meleux	
14:15-14:30	CALIOPE forecasts evaluated by DELTA	M.T. Pay	Z
14:30-14-45	Evaluation of DELTA forecast functionality	J. Stocker	
14:45-15:00	Discussion	All	

- Workplan 2014-2016
 - Q1: Can we use DELTA and its reporting template adapted for forecasting as in the current version? Or do we need to add other indicators/diagrams? If so which ones?
 - Q2: Do we need to add new MQO addressing the detection of threshold exceedances ?

AQ forecasting system

- European and national air quality platforms produce daily forecasts for the D+0, D+1 and D+2.
 - provide every day information related to the air quality levels
 - targetted pollutants: O3,NO2,PM10,PM2.5
 - In case of pollution episode:
 - Support to policy users
 - Provide recommendations to the public
 - to identify the likely causes
 - to assess population exposure
 - to set-up the efficient measures (short term action plans)

MACCII regional forecasts over Europe

• Based on an ensemble of 7 European models using the same input data (met, emissions, boundary conditions)

	Current geometry	Assimilation metho	d
CHIMERE INERIS, CNRS	0.1°, L8, top : 500hpa	Optimal Interpolation	on
EMEP met.no	0.25°x0.125°, L20, top : 100hpa	Variational 3d-var	Sunday 9 February 2014 00UTC MACC-RAQ Forecast D+3 VT: Wednesday 12 February 2014 Model: Ensemble Median (N+6) Height level: Surface Parameter: PM10 Aerosol Daily Mean [µg/m3]
EURAD FRIUUK	15km, L23, top : 100hpa	Variational, 3 <mark>d-va</mark> r	50"N 50"N 50"N 50"N 50"N 50"N 50"N 50"N
L-EUROS	0.25°x0.125°, L4, top : 3.5km	Ensemble Kalman Filter	50°N 40 50°N 40 50°
МАТСН	0.2°, L40, top : 100hpa	Variational, 3d-var	25'N 20'W 15'W 5'W 0' 5'E 10'E 15'E 20'E 20'E 20'E 20'E 40'E 40'E
MOCAGE MF, CERFACS	0.2°, L47, top : 5hpa	Variational, 3d-var	
SILAM FMI	0.2°, L46/8, top : 100hpa	Variational, 4d-var	

MACC AQ forecast evaluations on a daily basis

RMSE

Ratio of the

- MACCII operational evaluation relies on NRT obs data for computing:
 - Bias, RMSE and correlation
 - Calculated for the 96 hours
 - Timeseries of scores from D+0 to D+3 averaged over the last week and the last three months
 - Taylor diagrams

Ratio of the standard deviations - $\sigma_{\text{forecasts}} / \sigma_{\text{obs}}$

Additional statistical verification of model forecasts and ensemble done a posteriori: 6-monthly reports

- Evaluations focus on RMSE, bias, correlation averaged over quarters
 - Analyses of the model scores compared to the ones computed one year before and compared to the ensemble performances
 - Teams provide explanations regarding the changes on their model behaviours

MACCII policy

- There are no scores referring to daily values and to regulatory threshold
 - To provide useful products for national or local applications dealing with air quality management
 - scientific evaluation of the model forecasts and of the ensemble multi-model.
- This approach might change with the operational set-up of the Copernicus atmospheric service (in 2015)
 - ENSEMBLE can test the FAIRMODE procedures for forecasting evaluation

ir un développement dura

FAIRMODE FORECAST TARGET

• A target has been designed in the previous FAIRMODE phase for forecasting applications :

$$\operatorname{target} = \frac{\sqrt{\frac{1}{N} \sum_{i=1}^{N} (M_{i} - O_{i})^{2}}}{\sqrt{\frac{1}{N} \sum_{i=1}^{N} (O_{i-1} - O_{i})^{2}}}$$

Stating that the worst acceptable model is the persistent model, so at a given station the forecast (D+0) provides the observation of the eve (D-1).

ir un développement durc

FAIRMODE FORECAST TARGET

- What are the policy objectives for using AQ forecasts:
 - Predict the development of a pollution episode
 - How able are the model to reproduce the transition between non polluted regime to polluted regime?
 - How able the model are to detect / anticipate threshold exceedances ?
 - The triggering of measures is based on threshold values
 - Use of the group function in Delta tool to select an adapted range of station for such evaluation (including observation uncertainty)
 - How stable are the forecast scores from D+0 to D+n (usually n = 2 or 3)?
 - Policy measures are more efficient when they are taken earliest so the goal is really to provide confident forecasts at least at D+1 (D+2 would be even better)

ir un développement dur

FAIRMODE FORECAST TARGET

- Focus on daily mean and daily maximum
- Various assessments should considered :
 - a global approach (whole domain and whole year)
 - sub-geographical groups (in linkages to the heterogeneity of the geographical distribution of the emission sources)
 - sub-temporal groups (seasonal evaluations...)
 - For instance the model ability to reproduce PM10 levels may vary from one season to another

French evaluation for episodes

- The evaluation of the French PREV'AIR system relies on the classical skill scores (RMSE...)
- additional assessment are produced focusing on episodes

PM10 daily mean concentrations (μg/m³); March 2014

un développement dur

French evaluation for episodes

- Timeseries of the number of threshold exceedances
- Contingency tables
 - D+0 to D+2
 - Regional representation

Conclusions

- Forecast model should be assessed using classical scores and target defined in the delta tool -> but the best models doesn't mean ability to detect threshold exceedances
- Using forecast for AQ managements, additional evaluations should be requested
 - Is there possible adaptation of the Delta target for forecasting threshold exceedances ?
 - How can we connect this forecasting target to indicators dedicated to threshold detection ability (contingency table, odds ratio skill scores ...) ?
- Do we need strict evaluation of the co-located threshold exceedances in obs & mod ?

in dévelopment du