

WG1. Benchmarking DELTA-Tool Application on Portugal

Alexandra Monteiro. Ana Isabel Miranda Diogo Lopes. Helena Martins. Isabel Ribeiro

DELTA-Tool applications

DELTA-Tool has been used for model evaluation with the purposes of:

- Long-term air quality assessment purposes
- Operational forecast
- Specific air pollution research studies

over Portugal and urban areas (Porto & Lisbon)

Our DELTA-Tool experience

Official reports for Environmental Protection Agency

The performance of the air quality modelling system (for both assessment and forecast purposes) is evaluated using DELTA-Tool

Some results $-NO_2$

(a)

(b)

Some results $-NO_2$

Some results $-O_3$

Some results $-O_3$

MEC		PP	•	LNH
PFR		οu	•	TER
010		LAR		
SOB		LOU		
001 🗧		MEM		
ILH 🗧		ARC		
ERV		CHA		
FUN		FPO		
MOV		ALV		
	MEC PFR OLO SOB COI ILH ERV FUN MOV	MEC PFR OLO SOB COI ILH ERV FUN MOV	MEC PP PFR OLI OLO LAR SOB LOU COI MEM ILH ARC ERV CHA FUN FPO MOV ALV	MEC PP PFR OLI OLO LAR SOB LOU COI MEM ILH ARC ERV CHA FUN FPO MOV ALV

Some results – PM10

(a) (b) TARGET PLOT vithin Crit (T=1): 100% BIAS COT COOF T=1 0,60 15 0.80 M/eigma0 CRMSE SD 0.90 0.95 0.5 0.99 BIAS < 0 0.0 1.00 $^{-2}$ 1.0 SigmaM/sigmaD 0.0 0.5 1.5 2.0 -2 NVE MEC FRN ۵. TER PMN MOV PFR OLI ۵ COM LAR MEM OLD COI ARC ILH CHA Ô. FP0 ERV ò FUN ALV ۵

F

Some results – PM10

1st problem: number of pollutants

What we do for the other pollutants...

Statistical quality indicators for air quality model performance evaluation

Available online at www.sciencedirect.com ScienceDirect

Environment International 34 (2008) 613-620

Procedures for estimation of modelling uncertainty in air quality assessment

C. Borrego*, A. Monteiro, J. Ferreira, A.I. Miranda, A.M. Costa, A.C. Carvalho, M. Lopes

CESAM, Departamento de Ambiente e Ordenamento, Universidade de Aveiro, 3810-193 Aveiro, Portugal Available online 29 January 2008

Abstract

The main objectives of this work focus, firstly, on a review of the current existent methodologies to estimate air quality modelling uncertainty, and, secondly, in the preparation of guidelines for modelling uncertainty estimation, which can be used by local and regional authorities responsible for air quality management. From the application exercise, it was concluded that it is possible to define a subset of statistical parameters able to reproduce the general uncertainties estimation. Concerning the quality indicators defined by EU directives, the results show that the legislated uncertainty estimation measures are ambiguous and inadequate in several aspects, mainly in what concerns the error measures for bourly and daily indicators based on the highest observed concentration. A relative error at the percentile correspondent to the allowed number of exceedances of the limit value was suggested and tested, showing that is a more robust and appropriate parameter for model performance evaluation. © 2007 Elsevier Ltd. All rights reserved.

Keywords: Air quality; Modelling; Uncertainty; Quality indicators

n.a. — not applicable.

What we do for the other pollutants...

Mean statistical parameters for PM2.5

Station	r	RMS	BIAS	FB	NSD	NMSE	ANB	MG	VG	d
Station	ion [-]	[µg.m ⁻³]	[µg.m ⁻³]	[-]	[-]	[-]	[-]	[µg.m ⁻³]	[µg.m ⁻³] ²	[-]
СНА	0.71	4.93	-0.04	-0.01	1.05	0.44	0.49	0.98	1.00	0.83
ERV	0.72	10.79	-0.26	-0.02	1.13	0.52	0.72	0.99	1.00	0.84
FUN	0.69	3.97	0.13	0.03	0.88	0.57	0.66	0.95	1.00	0.82
LAR	0.69	8.06	-0.39	-0.04	1.19	0.76	0.67	0.96	1.00	0.81
MEM	0.71	5.05	-0.04	-0.01	1.02	0.54	0.66	0.98	1.00	0.83
MVE	0.35	20.66	-0.37	-0.04	0.74	5.03	0.92	0.95	1.00	0.52
OLI	0.61	8.71	-0.13	-0.01	1.09	0.46	0.55	1.00	1.00	0.77
OLO	0.75	2.64	0.07	0.02	0.96	0.48	0.54	1.00	1.00	0.86
PFR	0.64	6.93	0.08	0.01	0.90	1.53	0.87	0.92	1.01	0.78
SOB	0.71	4.90	-0.05	-0.01	1.12	0.52	0.54	1.02	1.00	0.84
TER	0.70	5.47	-0.09	-0.01	0.98	0.44	0.66	0.95	1.00	0.83
Mean	0.66	7.46	-0.10	-0.01	1.01	1.03	0.66	0.97	1.00	0.79

Legend

r: Correlation coefficient RMS: Root mean squared error FB: Fractional bias NSD: Normalized standard deviation NMSE: Normalized mean square error ANB: Average normalized absolute bias MG: Geometric mean bias D: Index of agreement

2nd problem: legislation thresholds

Pollutant	Reference period	Legislation parameter	µg.m⁻³	
SO ₂	1 hour	Limit value	350	
	1 day	Limit value	125	
	1 hour	Alert threshold	500	
	Winter	Critical level	20	
NO2	1 hour	Limit value	200	
	1 year	Limit value	40	
	3 hours	Alert threshold	400	
NOx	1 year	Critical level	30	
C ₆ H ₆	1 year	Limit value	5	
СО	8 hours	Limit value	10000	
DN/10	1 day	Limit value	50	
PIVI10	1 year	Limit value	40	
PM2,5	1 year	VA: 25	25	
0 ₃	8 hours	VA: 120	120	
	1 hour	Information threshold	180	
	1 hour	Alert threshold	240	

Legislated thresholds

There are other legislated parameters that are not included like:

- Information and alert thresholds for O3
- Annual average PM10
- Annual average NO2
- ...

2nd problem: identification of stations/regions with model deficiencies

PFR

OLO

VCON

STIR

ILH ERV

FUN

PP

ОЦ

LAR

LOU

ARC CHA

> Not legible (and as it is. the legend is not necessary!) Maybe using different symbols. similar to the target plot At least to be possible to identify the stations out of criteria

Minor notes about our use of DELTA-Tool

Preparation of cdf file

The manual do not explain how to build the cdf file... Maybe some information/help can be given

DELTATOOL_MODcsv2cdf *** VERSION 1.1	
	COMMENTS
HOME_DIR = C:\deltatool\	
Readinfo >>	
STARTUP_FILE =	
INIT_RUN =	
END_RUN =	
INPUT_DIR =	
FILE_ID =	
IN_FILE =	
OUTPUT_DIR =	
MODEL/OUTPUT =	
OUT_FILE =	
SaveInfo in File InfoMODcsv2cdf*.txt	
Progress "	
HELP GO EXIT	

Bisextile years

DELTA-TOOL manual

"Year: year of interest (for bissextile years only first 8760 data are considered)"

Not only that: the year have also to be other Don't work with bisextile years identification

Just some notes about the User's Guide

Just some notes about the User's Guide

