

National Institute for Public Health and the Environment Ministry of Health, Welfare and Sport

Benchmark of Data Fusion First results

October 20, 2024

Benchmark DF/DA | Oct 20, 2024

- A few words on the RIVM data fusion scheme.
- Analysis of the data / results of RIVM.
- Questions?
- Comparison of all models
- Discussion
- Questions?

Data fusion RIVM

- First, the calibrated sensor values are interpolated on a 1x1 km² scale over the whole country.
- The systematic uncertainty of the sensor calibration is estimated using a bootstrap, taking the number of sensors and the number of official measurements into account.
- The random uncertainty of the sensors is estimated from a relation derived from co-location of many sensors.

- The individual random uncertainties are included in the interpolated sensor field using a bootstrap.
- The uncertainty in the RIO field is combined with that of the sensor field to estimate a new, data fused, concentration map.

Data fusion RIVM

- The data fusion process is run parallel for all three variants: standard RIO, MidOut and Sparse RIO.
- Each data fusion run for one variant takes roughly 20 seconds on 1 core of a M1 Pro MacBook.
- As a test, sets of input and output concentration fields were checked.

- Extract the values of the models, original RIO fields and results of data fusion at the locations of official measurements, i.e. NL10636 (Utrecht).
- Plot as a function of the number of the hour.
- Official (LML) measurements are grey circles.
- Solid curves are original RIO, standard, midOut and sparse.
- Dashed curves are the results of the data fusion.

Analysis of correlations

- Extract the values of the models, original RIO fields and results of data fusion at the locations of official measurements.
- Correlate the official (LML) measurements with the RIO results and the results of the data fusion.
- Standard deviations of differences LMLmodel are shown in the caption of the figures.

Correlations

DF/DA | Oct 20, 2024

- Extract the values of the models, original RIO fields and results of data fusion at the locations of official measurements.
- Correlate the official (LML) measurements with the RIO results and the results of the data fusion.
- Standard deviations of differences LMLmodel are shown in the caption of the figures.
- Calculate RMSE for every location.

		91%	STANDARD		91%	MIDOUT		88%	SPARSE		Average RATIO RMSE=	92%	91%	88%
	RMSE	RMSE	SE in CHEC	RMSE	RMSE	SE in CHEC	RMSE	RMSE	SE in CHECK	?				
NL01485	1.5	1.2	0	1.5	1.2	0	2.1	1.4	1	NL01485	Hoogvliet-Leemkuil			67%
NL01487	2.7	2.7	1	2.6	2.7	1	2.8	2.8	1	NL01487	Rotterdam_Zuid-Pleinweg	100%	104%	100%
NL01488	1.7	1.5	0	1.6	1.5	0	1.7	1.5	0	NL01488	Rotterdam_Zuid-Zwartewaalstraat			
NL01489	2.0	1.8	1	2.0	1.8	1	2.1	1.9	1	NL01489	Ridderkerk-Hogeweg	90%	90%	90%
NL01491	1.9	1.8	1	1.9	1.8	1	1.8	1.6	1	NL01491	Rotterdam-Oost_Sidelinge_A13	95%	95%	89%
NL01493	2.3	2.0	1	2.3	2.0	1	2.2	1.9	1	NL01493	Rotterdam_NoordStatenweg	87%	87%	86%
NL01494	1.6	1.4	0	1.6	1.4	0	1.5	1.3	0	NL01494	Schiedam-Alphons_Arienstraat			
NL01495	1.2	1.3	0	1.2	1.3	0	2.3	2.0	1	NL01495	Maassluis-Kwartellaan			87%
NL01496									1	NL01496	Hoek_vHolland-Berghaven			
NL01913	4.4	4.9	1	4.4	4.9	1	4.6	5.1	1	NL01913	Sluiskil-Stroodorpestraat	111%	111%	111%
NL10131	2.7	2.7	0	2.7	2.7	0	5.5	4.7	1	NL10131	Vredepeel-Vredeweg			85%
NL10136	4.6	3.6	1	4.6	3.6	1	4.6	3.6	1	NL10136	Heerlen-Looierstraat	78%	78%	78%
NL10138	3.0	2.6	0	3.0	2.6	0	2.6	2.4	0	NL10138	Heerlen-Jamboreepad			
NL10230	4.4	4.6	0	4.5	4.6	0	4.7	4.7	0	NL10230	Biest_Houtakker-Biestsestraat			
NL10240	3.3	3.4	1	3.3	3.4	1	3.9	3.8	1	NL10240	Breda-Tilburgseweg	103%	103%	97%
NL10241	2.5	2.7	0	2.4	2.7	0	4.1	4.0	1	NL10241	Breda-Bastenakenstraat			98%
NL10247	4.7	4.8	0	4.6	4.8	0	9.2	7.4	1	NL10247	Veldhoven-Europalaan			80%
NL10248	6.9	6.3	1	7.1	6.4	1	8.0	6.9	1	NL10248	Nistelrode-Gagelstraat	91%	90%	86%
NL10404	3.3	3.4	0	3.3	3.4	0	4.7	4.0	1	NL10404	Den Haag-Rebecquestraat			85%
NL10418	2.4	2.5	0	2.4	2.5	0	3.2	3.0	1	NL10418	Rotterdam-Schiedamsevest			94%
NL10444	2.7	2.9	0	2.7	2.9	0	4.6	4.2	1	NL10444	De_Zilk-Vogelaarsdreef			91%
NL10449	3.5	3.1	1	3.5	3.1	1	3.6	3.2	1	NL10449	Vlaardingen-Riouwlaan	89%	89%	89%
NL10450	3.4	3.2	1	3.4	3.2	1	4.1	3.6	1	NL10450	Den Haag-Neherkade	94%	94%	88%
NL10538	2.4	2.4	0	2.4	2.3	0	5.3	4.8	1	NL10538	Wieringerwerf-Medemblikkerweg			91%
NL10636	4.2	3.1	1	3.9	2.9	1	3.9	2.8	1	NL10636	Utrecht-Kardinaal_de_Jongweg	74%	74%	72%
NL10641	6.6	5.8	1	7.0	6.1	1	7.0	6.0	1	NL10641	Breukelen-Snelweg	88%	87%	86%
NL10643	3.1	3.7	0	5.0	4.7	1	4.7	4.5	1	NL10643	Utrecht-Griftpark		94%	96%
NL10644	3.9	4.0	0	5.7	5.2	1	4.0	4.0	0	NL10644	Cabauw-Wielsekade		91%	
NL10738	2.8	2.7	0	5.0	3.9	1	2.6	2.5	0	NL10738	Wekerom-Riemterdijk		78%	
NL10741	6.0	5.5	1	6.1	5.7	1	6.5	5.8	1	NL10741	Nijmegen-Graafseweg	92%	93%	89%
NL10742	3.0	2.9	0	2.6	2.7	0	4.6	4.0	1	NL10742	Nijmegen-Ruyterstraat			87%
NL10821	2.4	2.2	0	2.5	2.3	0	6.1	4.8	1	NL10821	Enschede-Winkelhorst.			79%
NL10934	2.2	3.1	0	2.2	3.1	0	1.1	2.6	0	NL10934	Kollumerwaard-Hooge_Zuidwal			
NL10937	5.5	4.5	1	5.5	4.5	1	7.1	5.4	1	NL10937	Groningen-Europaweg	82%	82%	76%
NL10938	3.0	2.4	0	3.0	2.4	0	5.5	3.8	1	NL10938	Groningen-Nijensteinheerd			69%
NL49007	3.3	3.2	1	3.4	3.2	1	3.5	3.3	1	NL49007	Amsterdam-Einsteinweg	97%	94%	94%
NL49012	3.3	3.1	1	3.3	3.1	1	3.2	3.0	1	NL49012	Amsterdam-Van_Diemenstraat	94%	94%	94%
NL49014	2.8	2.8	0	2.9	2.9	0	3.4	3.2	1	NL49014	Amsterdam-Vondelpark			94%
NL49016	2.0	1.8	0	1.9	1.8	0	1.7	1.5	0	NL49016	Amsterdam-Westerpark			
NL49017	4.4	4.1	1	4.4	4.2	1	4.8	4.4	1	NL49017	Amsterdam-Stadhouderskade	93%	95%	92%
NL49551	4.0	4.2	0	4.0	4.2	0	5.7	5.0	1	NL49551	IJmuiden-Kanaaldijk			88%
NL49553	4.0	4.2	0	4.0	4.2	0	5.8	5.0	1	NL49553	Wijk_aan_Zee-Burgemeester_Roth			86%
NL49556	2.5	2.5	0	2.5	2.5	0	4.3	3.7	1	NL49556	De_Rijp-Oostdijkje			86%
NL49561	3.0	3.0	0	3.0	3.0	0	3.6	3.5	1	NL49561	Badhoevedorp-Sloterweg			97%
NL49570	5.5	5.3	0	5.5	5.3	0	6.9	6.0	1	NL49570	Beverwijk_West-Creutzberglaan			87%
NL49572	4.5	4.8	0	4.5	4.8	0	5.9	5.6	1	NL49572	Velsen-Staalstraat			95%
NL49573	6.0	6.5	0	6.0	6.5	0	7.1	7.3	1	NL49573	Velsen-Reijndersweg			103%
NL49701	1.9	1.7	0	1.9	1.7	0	2.4	1.9	1	NL49701	Zaandam-Wagenschotpad			79%
NL49703	2.0	2.0	0	2.0	2.0	0	2.9	2.4	1	NL49703	Amsterdam-Spaarnwoude			83%
NL49704	2.3	2.2	0	2.3	2.2	0	3.0	2.3	1	NL49704	Amsterdam-Hoogtij			77%

RMSE

- Take differences between time series of measurements and model results at specific locations.
- Calculate RMSE of differences observation – model, with and without data fusion.
- Calculate ratio data fused model versus original model.
- Only locations not used in the data fusion.

RMSE

- Take differences between time series of measurements and model results at specific locations.
- Calculate RMSE of differences observation – model, with and without data fusion.
- Calculate ratio data fused model versus original model.
- Only locations not used in the data fusion.

Effect number of sensors

- For the case of the RIVM results, the relative effect of the data fusion on the RMSE at all test locations was compared to the number of nearby sensors.
- Two tests were performed, number of sensors within 10km range and 35 km range.
- There is an effect of the numbers of sensors, especially of the number of nearby sensors.
- Also some effect of sensors further away.

Effect RMSE at start

- For the case of the RIVM results, the relative effect of the data fusion on the RMSE at all test locations was compared to the RMSE before the data fusion.
- There is a clear (but modest) effect: the effect increases with larger initial RMSE.
- The effect is largest for the sparse case.

Overall conclusions results RIVM:

- For more than 90% of the test-locations the RMSE (observations versus model) is reduced after the data fusion.
- On average, the RMSE is reduced by 16% in January and by 11% in August.
- Note: the test-locations were not used in the data fusion,

National Institute for Public Health and the Environment Ministry of Health, Welfare and Sport

Questions so far?

Comparison of All results

- A similar analysis was performed for all contributing models: INERIS, VITO, ISSeP, CERC, MetNo and RIVM.
- Some models used reference measurements at selected locations, on top of the sensor measurements.

NL10636 (Utrecht) Effect of data fusion on standard RIO map.

Data January and August (where possible)

Comparison of All results

- A similar analysis was performed for all contributing models: INERIS, VITO, ISSeP, CERC, MetNo and RIVM.
- Some models used reference measurements at selected locations, on top of the sensor measurements.
- There are differences between the results of the different types of data fusion, especially for the sparse case.

NL10248 (Nistelrode) Effect of data fusion on SPARSE RIO map. Data January and August (where possible)

Comparison

- There are non-trivial differences between the results of the data fusion approaches.
- The largest effects of data fusion are observed for the sparse case.
- The RIO model that is used as a start of the DF already performs quite good.
- We should test with another model/map as a start. CAMS?
- Using official measurement data in the data fusion has a substantial effect.
- More models welcome!
- NOTE: all 1st results!

Next steps ...

- Hopefully more models.
- Several participants have indicated they want to tweak their models ③
- Process more hourly data, the week of September, 16-23, seems interesting, with concentrations/variations up to 40 ug/m3.
- More/better metrics to compare the performance of the models?
- Use other concentration fields as input for the data fusion?
- More discussion in 2nd session of WG6!

National Institute for Public Health and the Environment Ministry of Health, Welfare and Sport

Questions?