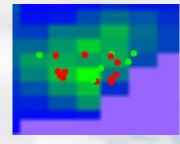
CT1 - Source apportionment Exercise SA Practices Methods

Mark R. Theobald, <u>Marta García Vivanco</u>, Victoria Gil, Juan Luis Garrido and Coralina Hernández

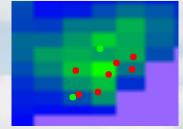
Atmospheric Modelling Unit CIEMAT. Madrid, Spain

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas



Objective: Long term action plan

 Estimate sector reductions necessary to achieve compliance with the new AAQD in the city of Barcelona


 PM_{10} : New annual limit value of 20 μ g/m³ exceeded at 12 stations in 2023

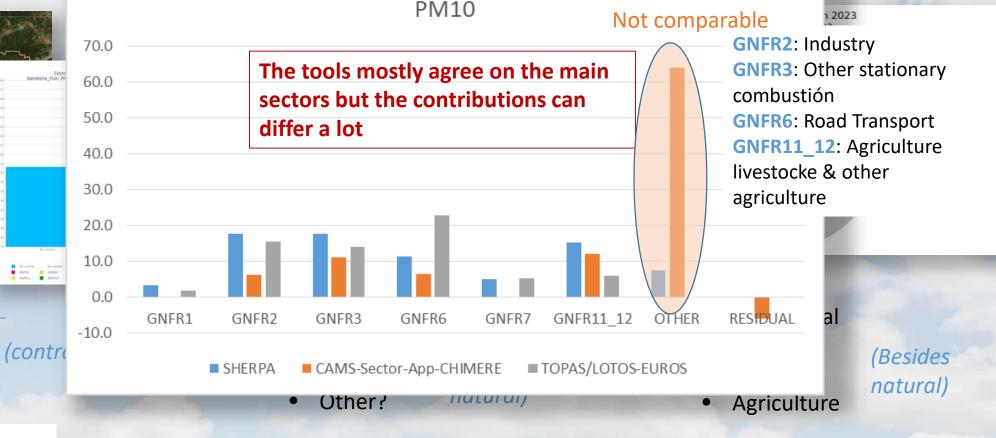
- Max. value: 26.2 μg/m³
- Reduction of 24% required for compliance

 $PM_{2.5}$: New annual limit value of 10 μ g/m³ exceeded at 7 stations in 2023

- Max. value: 15.6 μg/m³
- Reduction of 36% required for compliance

Step 1: Identification of contributing sectors (example for PM_{10}) **Tools used: CAMS Sector Apportionment** SHERPA

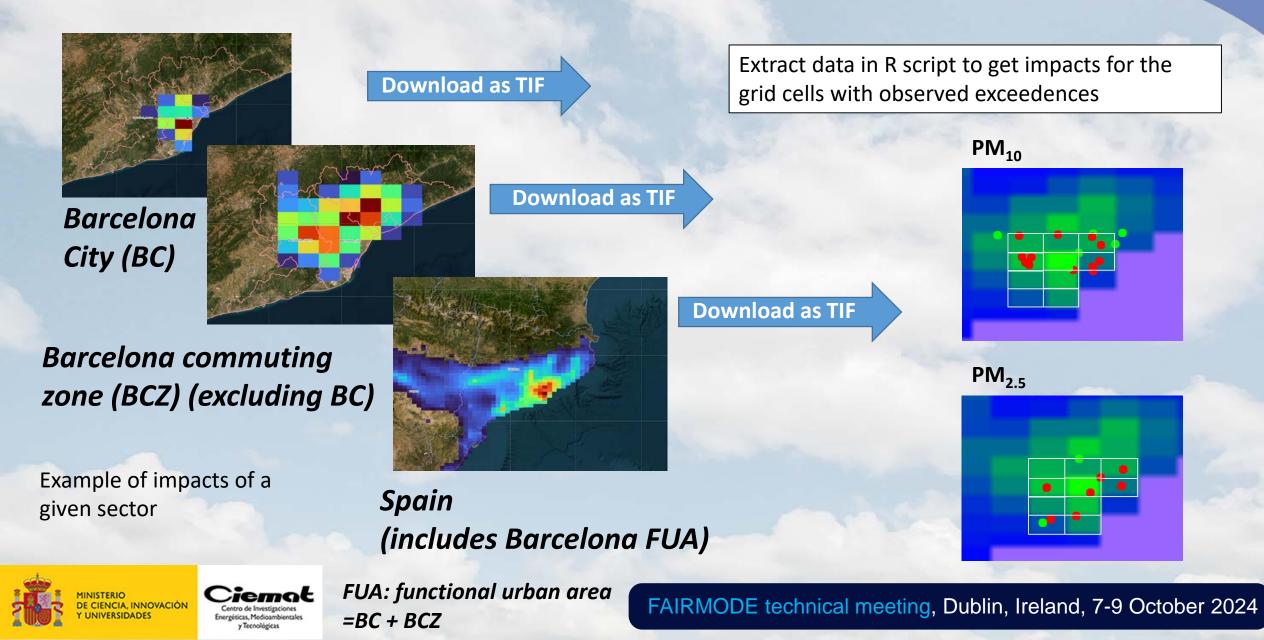
TOPAS (LOTOS-EUROS)

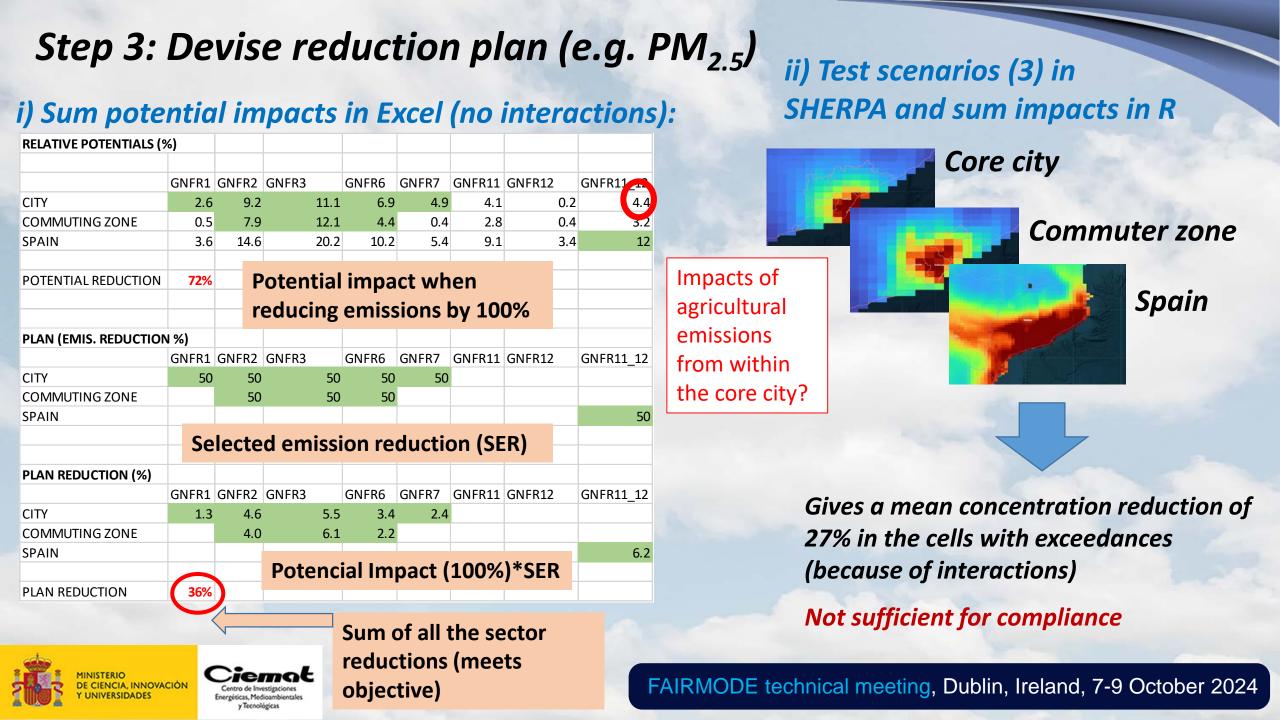

(CHIMERE) https://policv.atmosphere.copernicus.eu/dailv_source https://airaualitymodeling.tno.nl/topas/ https://aqm.jrc.ec.europa.eu/Section/Sherna/Rackaround

- Industry
- Other Stat. Comb.
- **Road Transport**
- National Shipping
- Livestock

reéticas, Medioambiental y Tecnológicas

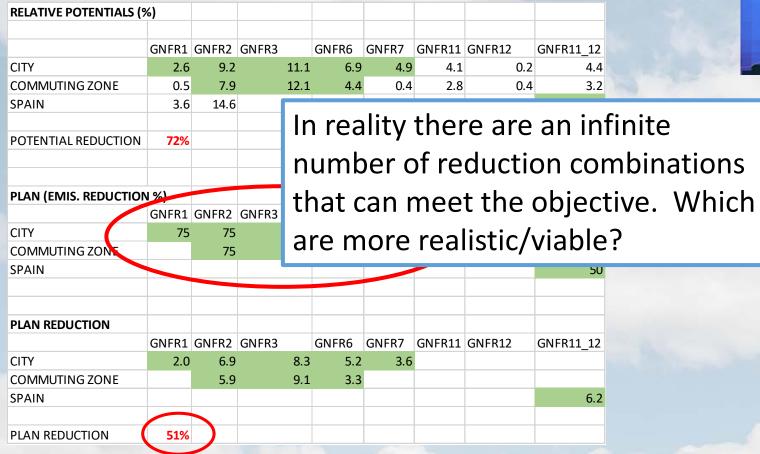
Step 1: Identification of contributing sectors


ICIA, INNOVACIÓN

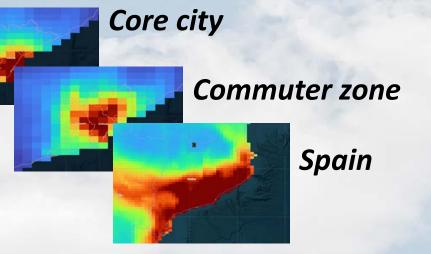

nergéticas, Medioambiental y Tecnológicas

For PM_{2.5} we also compared e results with our own source allocation study (TRANSAIRE Project; CHIMERE)

IRE 08019004 : BARCELONA : Barcelona (el Poblenou) (URBAN BACKGROUND) PM25 Not comparable PM2.5 **GNFR2**: Industry Concentration (μ g m⁻³) 00 00 **GNFR3**: Other stationary 60.0 combustión 50.0 **GNFR6**: Road Transport 40.0 **GNFR11 12**: Agriculture 30.0 livestocke & other 20.0 agriculture 10.0 0.0 RESIDU/ GNFR1 GNFR2 GNFR3 GNFR6 GNFR11 12 OTHER GNFR7 -10.00 -20.0 01/01/21 01/04/21 -30.0 -40.0 CAMS-Sector-App-CHIMERE TOPAS/LOTOS-EUROS TRANSAIRE-CHIMERE SHERPA

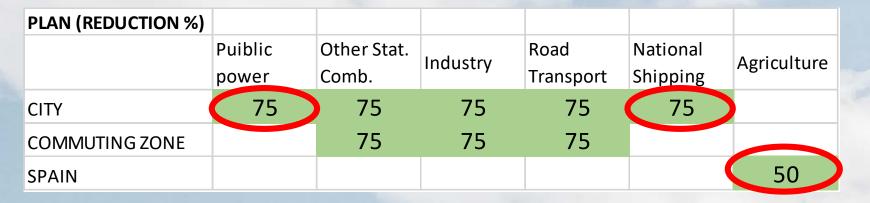

Step 2: Estimating impacts for different areas in SHERPA

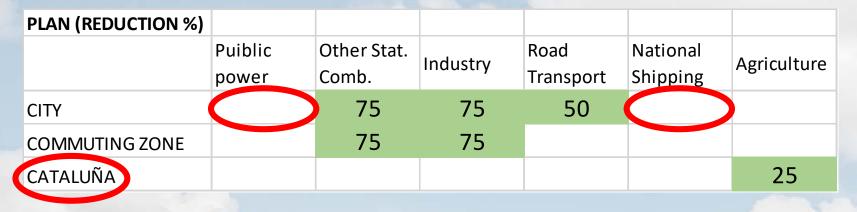
Step 3: Devise reduction plan (e.g. PM_{2.5})


iii) Refine scenario to obtain required reduction (%) in concentrations in grid cells with exceedances

NNOVACIÓN

preéticas, Medioambiental


iv) Test revised scenarios (3) in SHERPA and sum impacts in R


Gives a mean concentration reduction of 36% in the cells with exceedances (because of interactions)

Sufficient for compliance

Results PM_{2.5}

PM₁₀


More drastic reductions required to comply with PM_{2.5} limit value (larger reductions, more sectors, larger areas)

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

Comments and suggestions (SHERPA)

- It would help to have a list of sector names (have to put mouse pointer over the GNFR codes)
- Can't save calculations for future analyses (e.g. the next day)
- Sometimes you can't load a calculation that you saved (although it appears on the list)
- Agriculture in the city?
- Can't map emissions used for base case
- How realistic is the base case?
- Can't simulate complex scenarios
 (e.g. reductions for different sectors over different areas)
- Location of sites (selection of grid cells)
- It is only part of the solution

 PM_{10} concentrations > 90 µg m⁻³ in the **south of Spain**

The results need to be combined with information/optimisation of costs/viability

Thanks!

 Project TED2021-132431B-I00 (TRANSAIRE: Transition to cleaner air in Spain) funded by MCIN/AEI/ 10.13039/501100011033 and by the European Union NextGenerationEU/PRTR

• We also thank the Ministry for the Ecological Transition and Demographic Challenge (MITERD)

MINISTERIO PARA LA TRANSICIÓN ECOLÓGICA Y EL RETO DEMOGRÁFICO

mark.theobald@ciemat.es

CT1 - Source apportionment

Exercise SA Practices Methods – Ineris

FAIRMODE Forum for air quality modelling in Europe

Case study 1 : MILAN - Italy

The question we are trying to answer when we use Source Apportionment method chosen is :

What emission reduction policies should have been put in place to stay below the 50 mg/m3 threshold for PM10 during this extremely high pollution episode in Milan?

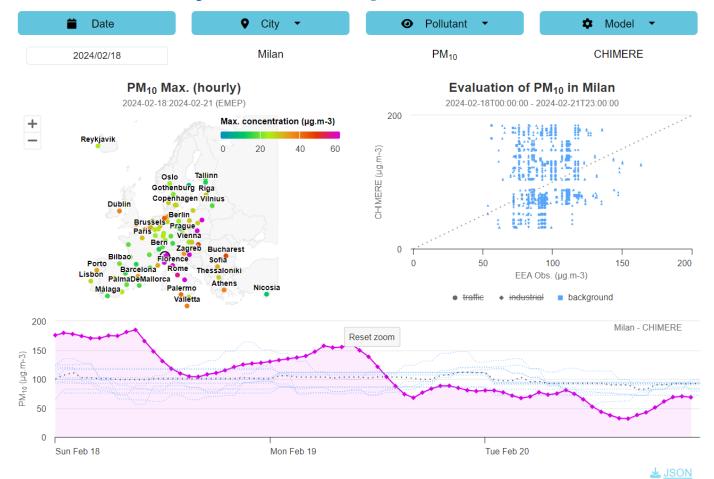
Tools used is CAMS-ACT

Point where exceedance occurs : Milan

The method applied to a short-term (episodes) using a long-term approach. We focus on particular on the episode occurs on **18/02/2024**

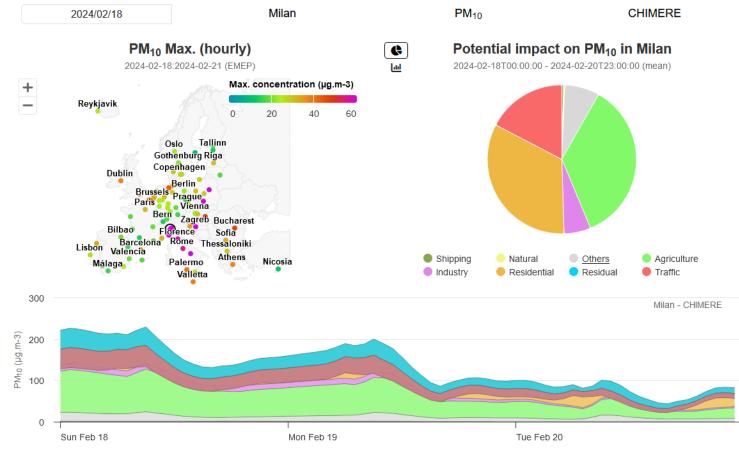
European

Procedure applied


How did we manage to answer the question?

Using the tools available on : https://policy.atmosphere.copernicus.eu/

Case study description


https://policy.atmosphere.copernicus.eu/daily_source_attribution/model_evaluation.php

Source Apportionment

https://policy.atmosphere.copernicus.eu/daily_source_attribution/sector_apportionment.php

0

-50

0

PM₁₀ concentration distribution

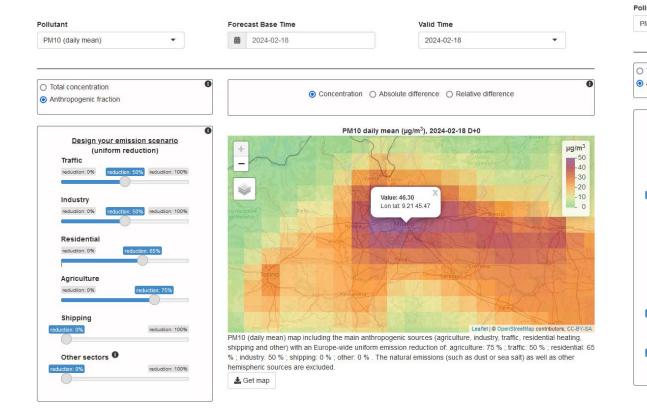
Emission reduction by sectors

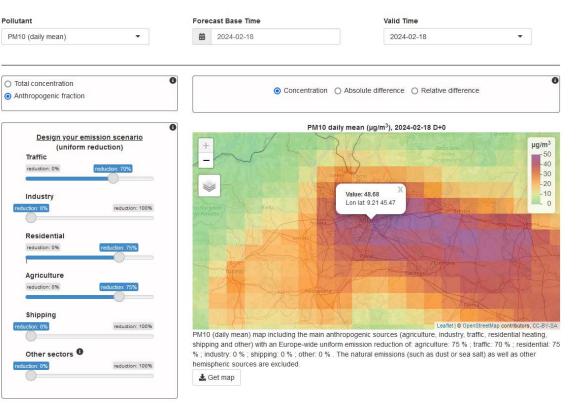
	Emission red	uction							
Agriculture	0%	50%	0%	0%	0%	75%	0%	0%	0%
Residential	0%	0%	50%	0%	0%	0%	75%	0%	0%
Traffic	0%	0%	0%	50%	0%	0%	0%	75%	0%
Industry	0%	0%	0%	0%	50%	0%	0%	0%	75%
Shipping	0%	0%	0%	0%	0%	0%	0%	0%	0%
Other sectors	0%	0%	0%	0%	0%	0%	0%	0%	0%
Concentration	153.58	143.57	118.43	132.58	146.19	112.35	100.85	121.76	142.38
% of reduction		6.52%	22.89%	13.67%	4.81%	26.85%	34.33%	20.72%	7.29%

Possible solutions

Sector recommended to act on and possible reductions :

	Emission red		
Agriculture	0%	75%	75%
Residential	0%	65%	75%
Traffic	0%	50%	50%
Industry	0%	50%	0%
Shipping	0%	0%	0%
Other sectors	0%	0%	0%
Concentration	153.58	46.30	48.68
% of reduction		69.85%	68.30%


Université



Resulting concentration

RSE

Exercise lesson

What issues did you find when answering the survey? What suggestions can you make to improve it?

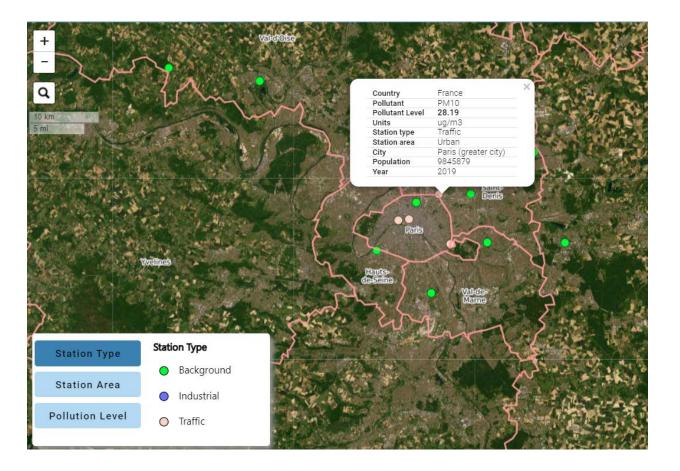
It was possible to arrive quickly and easily at an estimate and get an idea of which sectors are most important for reducing concentrations. More importantly, by taking into account the non-linearity of the system in this approach, it was also possible to see from which percentage emission reductions we can have a significant impact on concentrations (see example of the agricultural sector).

We did not attempt to combine these results with the Country/City CAMS Policy Tools to further analyze the importance of the local and non-local sources. (but it could have been done)

Case study : PARIS

Location of the receptor (point where exceedance(s) occur(s)) : Paris

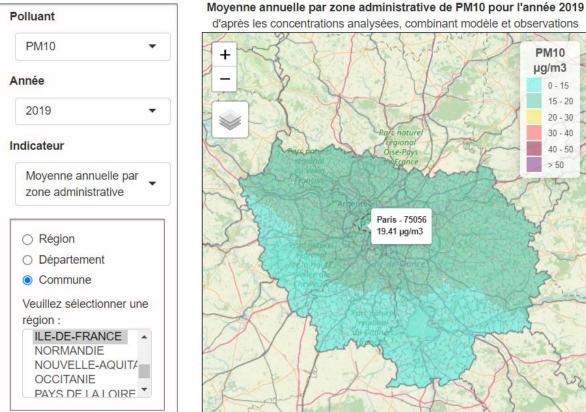
The method applied to a long-term (episodes) using a long-term approach. The year is 2019 (available in SHERPA website)


Tools used is SHERPA

Aim: we want to compare local reduction with reduction over All France

Case study

This station shows exceedance of the EU 2030 PM10 LV (20 µg/m3). A reduction of PM10 concentration by 28% is necessary to avoid exceedance Université RSE de Strasbourg



13 µg/m3

Maps

PM10 + µg/m3 0 - 15 15 - 20 20 - 30 30 - 40 nature 40 - 50 ise-Pays > 50 Paris - 75056 19.41 µg/m3


Seine-Saint-Denis Paris Hauts de-Seine Val-de-Marne

https://www.ineris.fr/fr/rechercheappui/risques-chroniques/mesure-previsionqualite-air/qualite-air-france-metropolitaine

Source Apportionment : PM10

https://jeodpp.jrc.ec.europa.eu/eu/dashboard/voila/render/SHERPA/Sherpa.ipynb

Note: Surprisingly high importance of the « waste » sector

Emission reduction by sectors

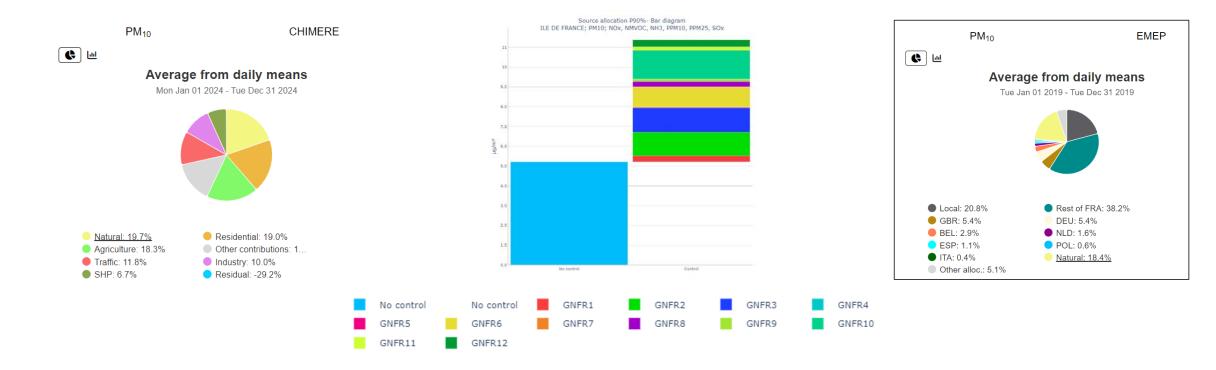
	Emission reduction over Paris Region									
Agriculture	0%	50%	0%	0%	0%	100%	0%	0%	0%	0%
Residential	0%	0%	50%	0%	0%	0%	100%	0%	0%	70%
Traffic	0%	0%	0%	50%	0%	0%	0%	100%	0%	70%
Industry	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Shipping	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Waste	0%	0%	0%	0%	50%	0%	0%	0%	100%	70%
Concentrati										
on (µg/m3)	12.9	12.65	12.103	12.234	11.777	12.40	11.31	11.57	10.66	9.28
% of										
reduction	0.225	1.94%	6.18%	5.16%	8.71%	3.88%	12.36%	10.33%	17.40%	28.06%

Note: Linear response (by design)

Some results

Sector recommended to act on:

	Emission reduction			
	Onlyover	All France		
	Paris area	Annance		
Agriculture	0%	55%		
Residential	70%	55%		
Traffic	70%	50%		
Industry	0%	0%		
Shipping	0%	0%		
Waste	70%	0%		
Concentration				
(µg/m3)	9.28	9.20		
% of reduction	28.06%	28.68%		



Annual potential impact comparison : PM10

CAMS ACT/CHIMERE (2024*)

SHERPA (2019)

CAMS SR/EMEP (2019)

SHERPA estimates that we can control almost roughly 50% of concentrations through reductions over IIe de France (roughly 100x100km2) The city S/R in CAMS Policy tools estimate roughly a 20% impact through reductions in a 42x42km2 square

Some general remarks

- SHERPA:
 - for easier understanding, replace "GNFR1", "GNFR2" etc... by the name of the sector, or at least "GNFR-A", GNFR-B" etc..
 - The name of the pollutants should appear on all graphs (risk of confusion PM10/PM25)
- SHERPA: is it possible to apply different emission reductions on different country ?
- CAMS/ACT: it would be interesting to add an interactive viewer of emission scenario for annual indicators and not only the day-to-day forecast. At present only the overall potential impact is available only for yearly statistics
- In general,
 - A reflexion is needed on bias correction in modelled source apportionment
 - Potential impact information is interesting to visualise which sector should be targeted but a real scenario with reduction on the different sector at the same time is needed.

Thank you for your attention

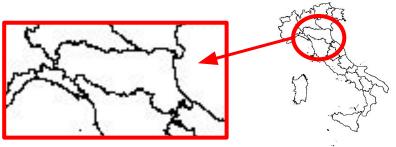
WG1 - SA Exercise

Roberta Amorati, Michele Stortini

ramorati@arpae.it

FAIRMODE Technical Meeting Dublin, 7-9 October 2024

1. What question are you trying to answer when you use a Source Apportionment method (whether or not using online tools)?

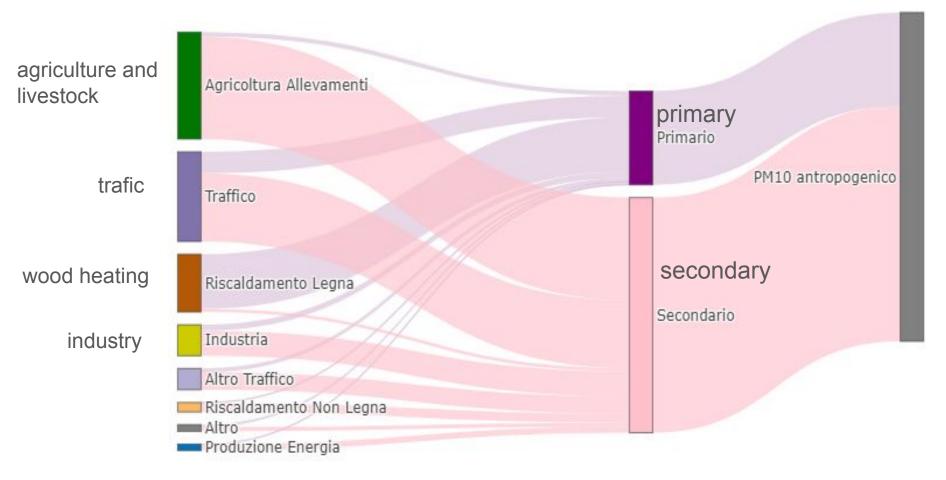

2. How did you arrive at your conclusions based on the tools you used? (You can illustrate your explanation with graphs or figures).

3. What issues did you find when answering the survey? What suggestions can you make to improve it?

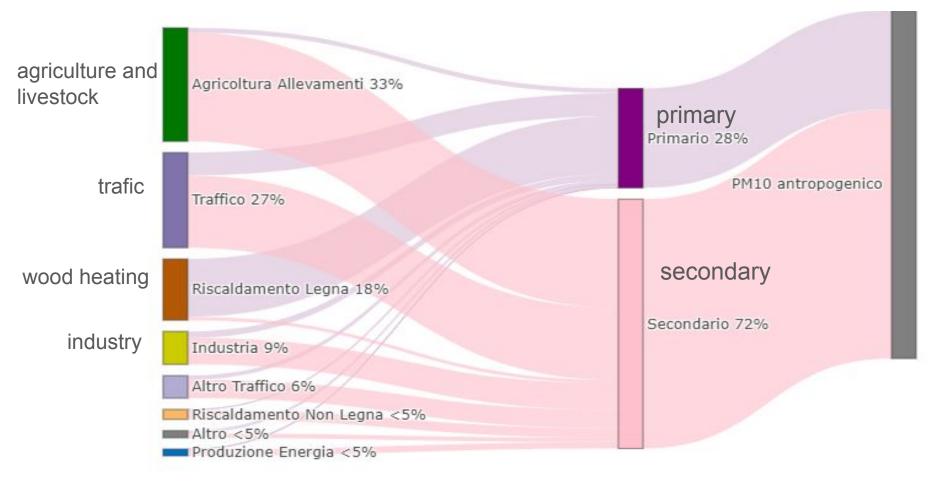
1. What question are you trying to answer when you use a Source Apportionment method (whether or not using online tools)?

Local government requires Arpae to support in defining the best and more fruitful measures to be taken in Emilia-Romagna AQ plans. Which are the main emitting sectors that contribute to pollution in Emilia-Romagna?

Which actions are to be done to attain AQ requirements in the whole Emilia-Romagna territory?


2. How did you arrive at your conclusions based on the tools you used?

First Step


A Brute Force Method has been applied.

Potential impacts have been computed by reducing the emission of primary PM and precursor gases: 9 sector X 2 type of pollutant reduction = 18 scenarios. A surrogate model (RIAT+) has been used to simulate concentrations instead of explicit simulations

Percentage contribution to anthropogenic PM10 by sector - Emilia-Romagna

Percentage contribution to anthropogenic PM10 by sector - Emilia-Romagna

2. How did you arrive at your conclusions based on the tools you used?

Second Step

RIAT+ tool has been used to define which actions must be implemented. These actions mainly involve agriculture and biomass: not only primary PM but also NH3, NOx, VOC The Emilia-Romagna AQ plan is in addition to CLE2030 that provides for a

significant reduction in traffic emissions.

3. What issues did you find when answering the survey? What suggestions can you make to improve it?

We reported our experience, so that some questions related the web tools are not fitting for our case

Q10 table was focused on primary PM, we split it in sectors and pollutant or precursors

to solve PM10 daily exceedances								
sector Area pollutant/precursor By how muc								
S2	Emilia-Romagna	PM10	46					
S7	Emilia-Romagna	PM10	3					
S10	Emilia-Romagna	NH3	38					
S7	Emilia-Romagna	NOx	98					
S3+S4 Emilia-Romagna PM10 4								
		PM10 30 scenario: results from RIA						

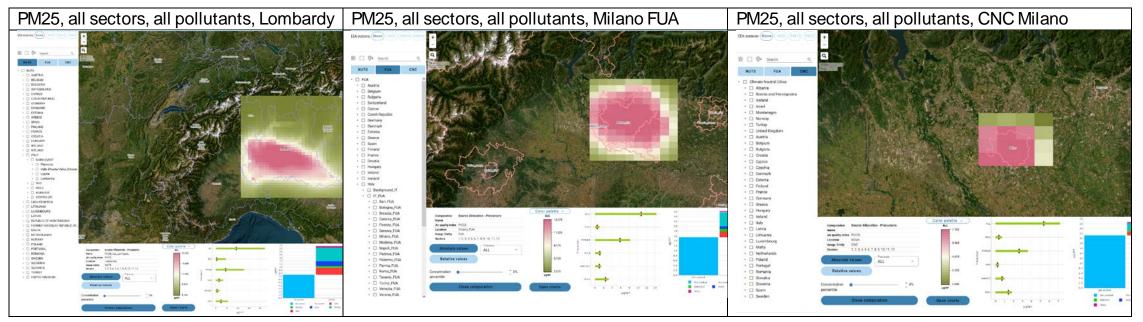
CT1 - Source apportionment

Exercise SA Practices Methods

ARPA LOMBARDIA Loris Colombo

FAIRMODE Forum for air quality modelling in Europe

Fill-in Template [1]


1 - Location of the receptor (point where exceedance(s) occur(s)) MILAN OR LOMBARDY REGION

2 - Short or long-term? Are SA results aiming at supporting short-term (episodes) or long-term (years) action plans? We use long-term; short-term is quite different from different methods

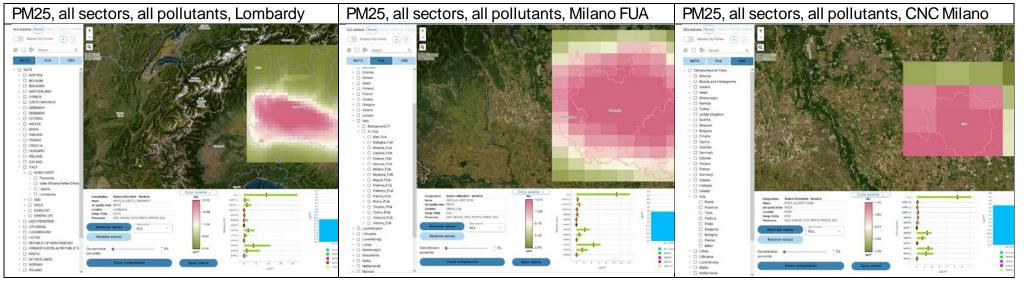
Fill-in Template [2]

- 3 Use of mandatory SA
 - A. Did you use SHERPA results? If yes, how (targeted sectors and areas) and why? If not, why? SHERPA MODE 1: Source Allocation Sectoral

- About 50% of PM2.5 depends on sources outside the region
- No more than 50% could be managed by regional actions plans (i.e. 20% is residential GNF3 and 10% is traffic GNF6)

3 - Use of mandatory SA

A. Did you use SHERPA results? If yes, how (targeted sectors and areas) and why? If not, why? SHERPA MODE 2: Source Allocation – Precursors


- About 50% of PM2.5 depends on sources outside the region (OBVIOUSLY EQUAL TO FORMER)
- In terms of emission contributions, share of PM is about 20% whereas NOX is 15%, NH3 is comparable with NOX.

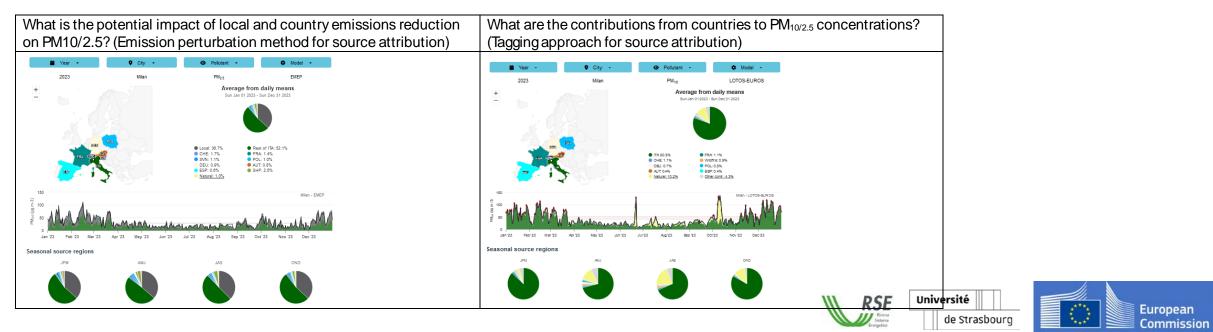
Fill-in Template [2]

3 - Use of mandatory SA

A. Did you use SHERPA results? If yes, how (targeted sectors and areas) and why? If not, why? SHERPA MODE 3: Scenarios

- 50% all sector NOX-NH3
- 50% all sector NOX NH3 only agricultural sector
- 50% all sector NOX NH3 only transport sector

These results could be compared to CTM FARM brute force modelling already done within a Regional Project. We think that the use of this section is useful to validate CTM results or to make a priori evaluation where to act some air quality Plan.



3 - Use of mandatory SA

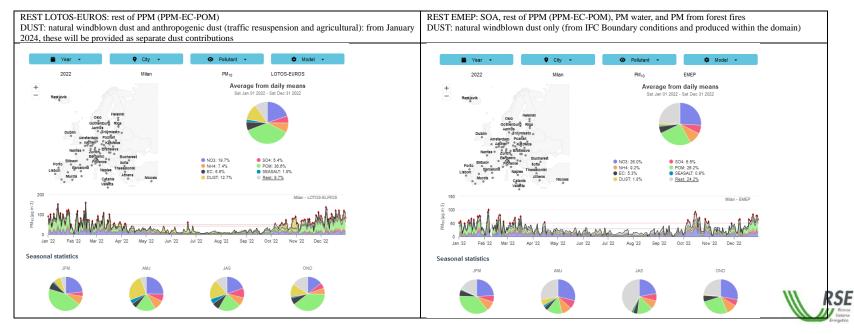
A. Did you use CAMS-EMEP-SR results? If yes, how (targeted sectors and areas) and why? If not, why?

A. Did you use CAMS-LOTOS-EUROS results? If yes, how (targeted sectors and areas) and why? If not, why?

Fill-in Template [2]

3 - Use of mandatory SA

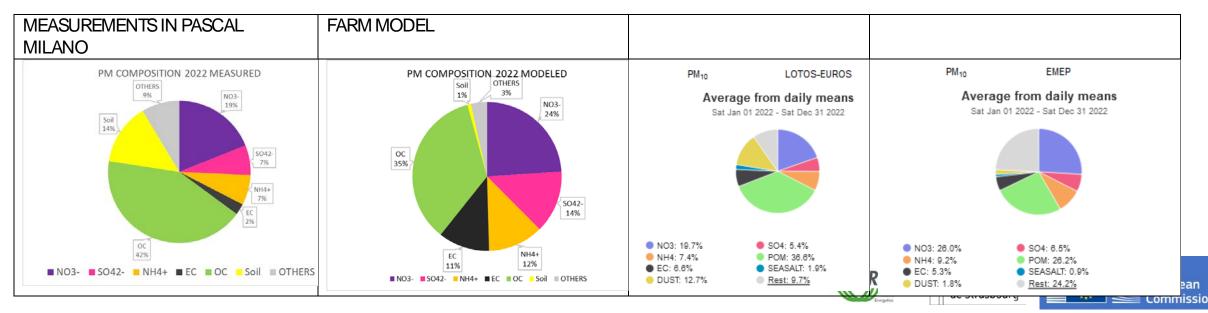
The two pie graphs are quite similar but there are some differences:

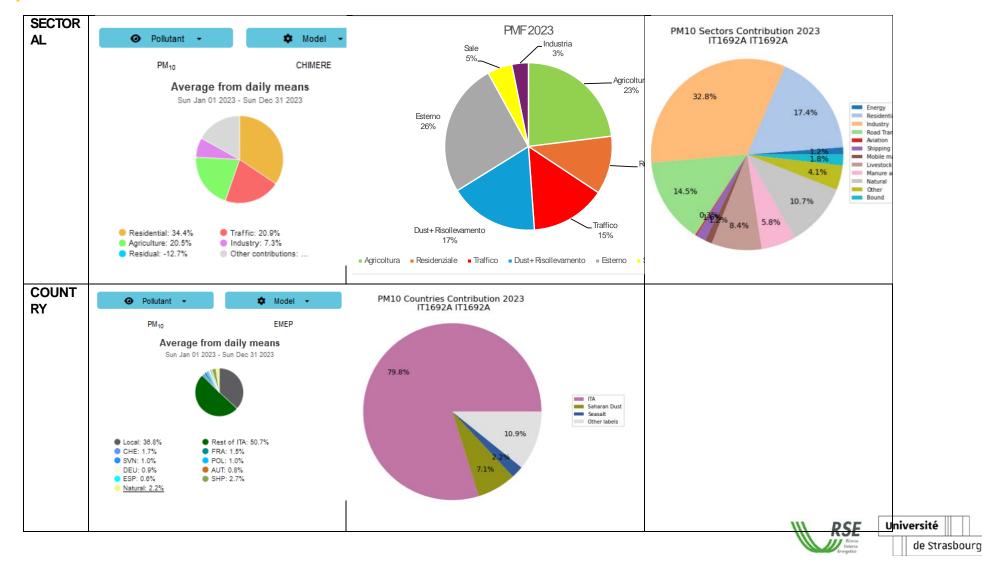

- REST is considered in a different way (it is obviously higher in EMEP)
- DUST is considered in a different way (LOTOS consider both natural and anthropogenic)
- TOTAL PM: what is total PM simulated? (https://policy.atmosphere.copernicus.eu/yearly_air_pollution_analysis/model_evaluation.php?dmin=2022-01-01&dmax=2022-12-31&year=2022)

Université

de Strasbour

European


Commission


Fill-in Template [3]

5 - If you used methods in complement to each other, explain how and why COMPARISON BETWEEN DIFFERENT MODELLING SYSTEM AND DATA VALIDATION In order to understand better the CAMS product a comparison has been made:

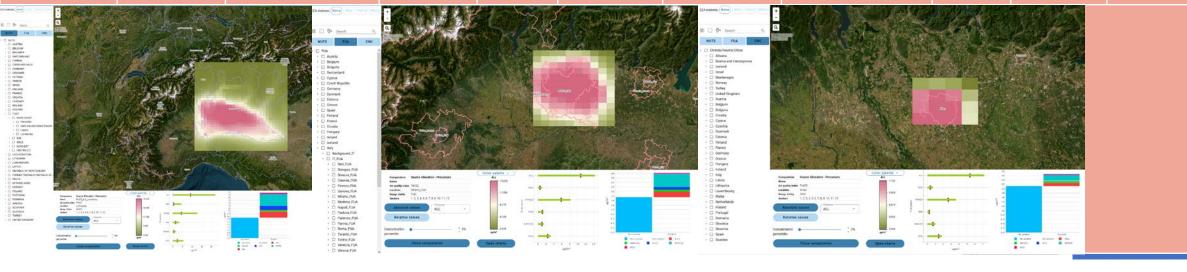
- OC/POM is similar except for EMEP (26%)
- SOIL and DUST measured is similar for MEASUREMENTS AND LOTOS (natural+human)
- SO4 is similar except for FARM MODEL
- NO3 is similar for all pie graphs

Fill-in Template [3]

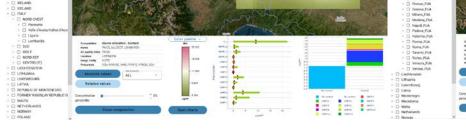
MAIN ISSUE

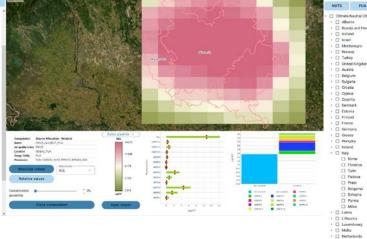
- They consider also secondary pollution or not?
- Seasonality presented is 3-monthly based, is it correct?
- Which is the total concentration of PM10? (https://policy.atmosphere.copernicus.eu/yearly_air_pollution_analysis/ model_evaluation.php?dmin=2022-01-01&dmax=2022-12-31&year=2022)
- GNFS vs SNAP?
- Different results should be analysed in a deeper way (i.e. Different emission, different meteo, different models)

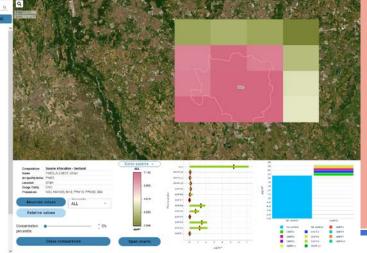
Fill-in Template [4]


6 - Which sector(s) do you recommend to act on? At which scale? Based on results, we have observed different percentage rate of sectoral impact

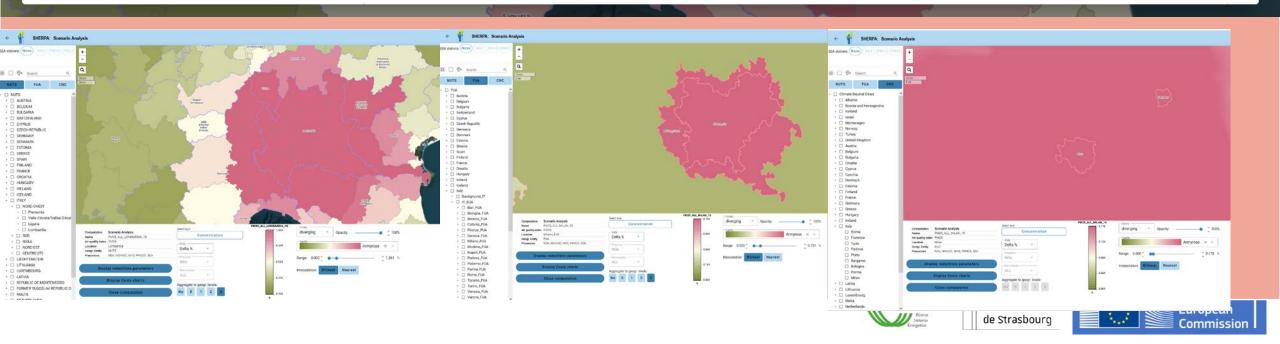
For example: Milan Sector Residential is not unique values based on different SA method


	Area 1	Area 2	Area 3	Area 4	Area 5	
Sector 1						
Sector 2						
Sector 3						
Sector 4						
Sector 5						

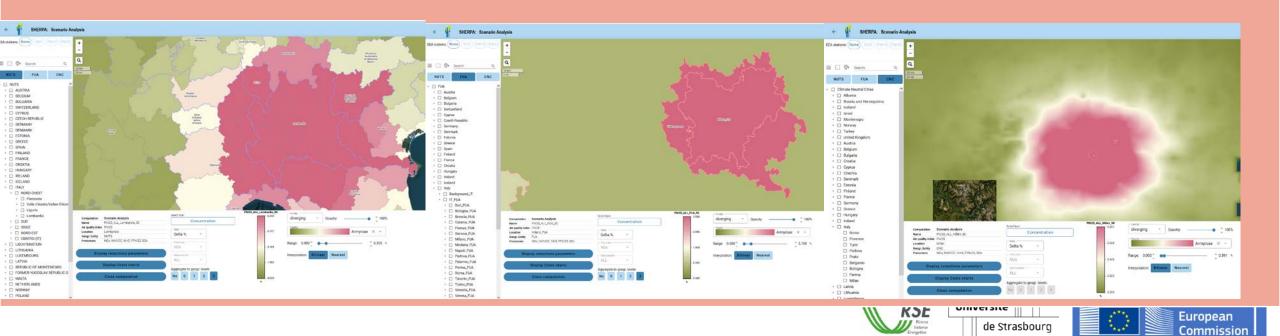



_											
		METHOD			INDICATORS			RECEPTORS			
Name of the method and type (tagging, brute force,)	Goal	Link	Modelling cha	racteristics	For which indicator is the SA performed?	Which emission pollutants?	Which emission sectors?	Over which time period?	Areas	Over which time average period	which spatial average area
			Spatial coverage & resolution	Temporal coverage & resolution							
SHERPA (brute force – source allocation)	Estimate responses on PM2.5 levels of emission reductions applied over different spatial areas	https://aqm.jrc.ec.europa.eu/Se ction/Sherpa/Background	EU at 6 km	Year based on hourly data	PM2.5 yearly average	NOx, NH3, SO2, PPM25	Transport, residential, agriculture, shipping, industry, 	yearly	City core (e.g. Paris intra- muros), greater city (e.g. Ile de France), country, EU	yearly	hot-spot concentration grid-cell within the core city

		METHOD			INDICATORS		SOURCES			RECEPTORS	
Name of the method and type (tagging, brute force,)	Goal	Link	Modelling cha	racteristics	For which indicator is the SA performed?	Which emission pollutants?	Which emission sectors?	Over which time period?	Areas	Over which time average period	which spatial average area
			Spatial coverage & resolution	Temporal coverage & resolution							
SHERPA (brute force – source allocation)	Estimate responses on PM2.5 levels of emission reductions applied over different spatial areas	https://aqm.jrc.ec.europa.eu/Se ction/Sherpa/Background	EU at 6 km	Year based on hourly data		NOx, NH3, SO2, PPM25	Transport, residential, agriculture, shipping, industry, 		City core (e.g. Paris intra- muros), greater city (e.g. Ile de France), country, EU	yearly	hot-spot concentration grid-cell within the core city
Lit.Account Balancia Balancia			Access from an intervence of a second secon				33 Assover (% and) Week for an analysis of the form o				

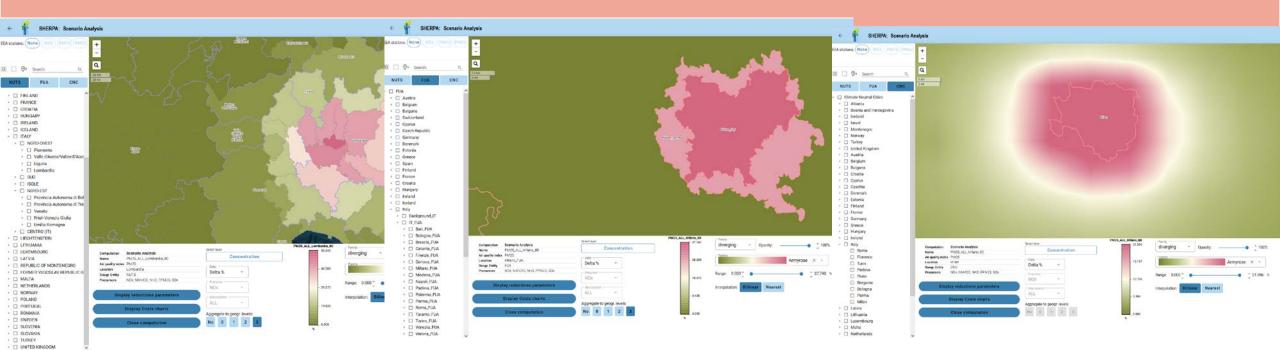


× Reduction parameters


Computation	Scenario Analysis	PRECURSOR	GNFR1	GNFR2	GNFR3	GNFR4	GNFR5	GNFR6	GNFR7	GNFR8	GNFR9	GNFR10	GNFR11	GNFR12
Name	PM25_ALL_LOMBARDIA_10													
Air quality index	PM25	NOx	10	10	10	10	10	10	10	10	10	10	10	10
Location	Lombardia	NMVOC	10	10	10	10	10	10	10	10	10	10	10	10
Geogr. Entity	NUTS	NH3	10	10	10	10	10	10	10	10	10	10	10	10
Precursors	NOX, NMVOC, NH3, PPM25, SOX	PPM25	10	10	10	10	10	10	10	10	10	10	10	10
		SOx	10	10	10	10	10	10	10	10	10	10	10	10

CLOSE

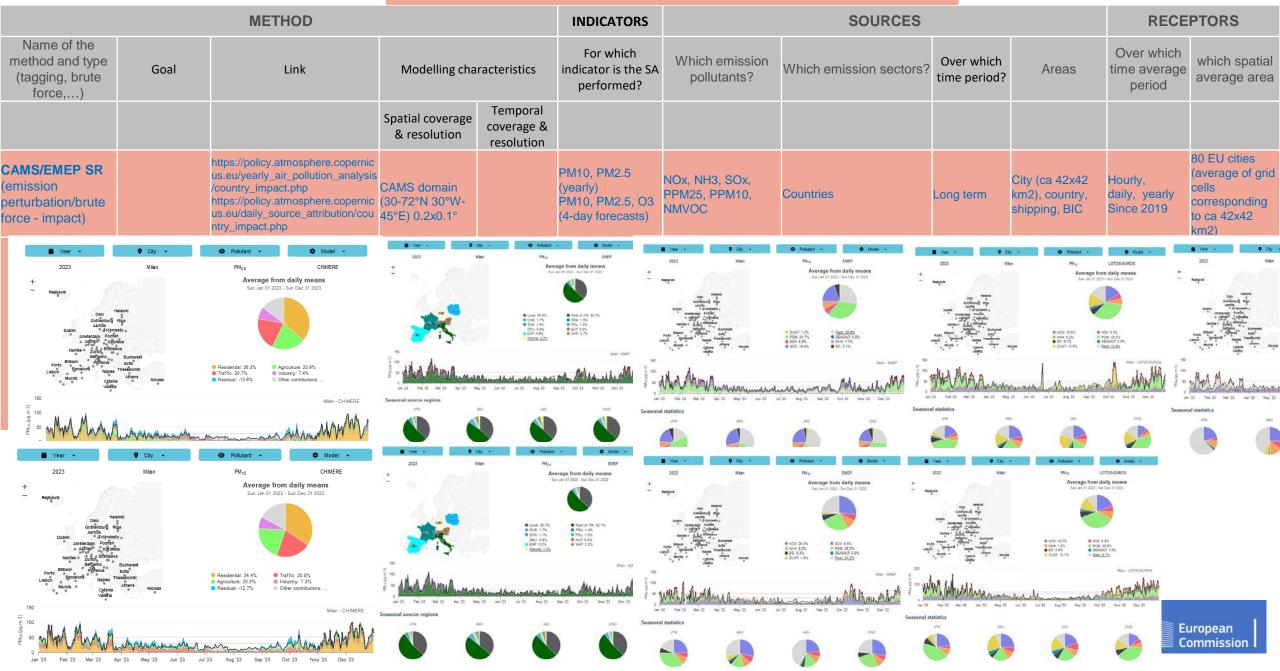
× Reduction parameters


Computation	Scenario Analysis	PRECURSOR	GNFR1	GNFR2	GNFR3	GNFR4	GNFR5	GNFR6	GNFR7	GNFR8	GNFR9	GNFR10	GNFR11	GNFR12
Name	PM25_ALL_Lombardia_50													
Air quality index	PM25	NOx	50	50	50	50	50	50	50	50	50	50	50	50
Location	Lombardia	NMVOC	50	50	50	50	50	50	50	50	50	50	50	50
Geogr. Entity	NUTS	NH3	50	50	50	50	50	50	50	50	50	50	50	50
Precursors	NOX, NMVOC, NH3, PPM25, SOX	PPM25	50	50	50	50	50	50	50	50	50	50	50	50
		SOx	50	50	50	50	50	50	50	50	50	50	50	50

CLOSE

× Reduction parameters

		PRECURSOR	GNFR1	GNFR2	GNFR3	GNFR4	GNFR5	GNFR6	GNFR7	GNFR8	GNFR9	GNFR10	GNFR11	GNFR12
Computation	Scenario Analysis	T ALLOON OON	O	OTT THE	on no		ontrito	on no	0.1110	on no	on the	0.11110		CHINE 2
Name	PM25_ALL_Milano_80													
Air quality index	PM25	NOx	80	80	80	80	80	80	80	80	80	80	80	80
Location	Milano_FUA	NMVOC	80	80	80	80	80	80	80	80	80	80	80	80
Geogr. Entity	FUA	NH3	80	80	80	80	80	80	80	80	80	80	80	80
Precursors	NOX, NMVOC, NH3, PPM25, SOX	PPM25	80	80	80	80	80	80	80	80	80	80	80	80
		SOx	80	80	80	80	80	80	80	80	80	80	80	80



CLOSE

Default Available EU Informations (mandatory)

		METHOD		INDICATORS		SOURCES			RECEPTORS		
Name of the method and type (tagging, brute force,)	Goal	Link	Modelling cha	racteristics	For which indicator is the SA performed?	Which emission pollutants?	Which emission sectors?	, Over which time period?	Areas	Over which time average period	which spatial average area
			Spatial coverage & resolution	Temporal coverage & resolution							
TOPAS (tagging)	Provide region or sector contributions to air pollution levels at any place and time	nups.//airquailtymodeling.tho.hi/	0.2x0.1°	2019-today hourly		NOx, NH3, SOx, PPM25, PPM10, NMVOC	Energy, Residential combustion, Industry, Fuel production, Solvent use, Road transport exhaust, road transport non-exhaust, shipping, aviation, mobile machinery, Waste, livestock, manure and storage, wildfire, saharan dust, seasalt, biogenic		Countries (also included in CAMS policy service)	hourly, daily and yearly	Major cities and eea observation sites
Construction of the second sec	source teach and out teach teach and an and an and and and Teach and an and and and and and and and and	And	• • • • • • • • •		Notive X: May Coss May Source Max Max Source Max Source Source Source Source Teal thormation on source source thormation on source source thormation on source			Composed Total Mix 10 um + Marco Cose Marco Marco Marco Marco Marco Marco Marco Marco Marco Sector Total Sector Total Sector Total Sector Total			
2.5 USU 1.1	Lin In		7	10 10 10 10 10 10 10 10 10 10 10 10 10 1	Levil Gunche V Sector contributions at IT-MILAN (Hillan)			Weternation on curvely allocation labels Lat 0 weeks * Earther constributions at IT-MILAN			
Comparison C	e abustos tato)	Large (1)	rm stor ·		Jan 2 jun 2 jul 3 jul 4 jul 9 jul 3 hotory Sheare Dut Vestor Vestor Vestor Vestor Vestor Sheare Dut Vestor Vestor Vestor Vestor Vestor Country centrifuctions at IT-MILAN (Milan	ына ына ыла ыла ыла ыла ыла прот-ки.		Any any and any and any	(Minn)		
El superior de la construcción d	Development of the second seco	RECENT AND A SUM A			Jan 2 Jan 2 Mag Market Jan 2 Market Jan 2 Market Jan 2 Market Market Jan 2 Market		" brit boot boot boot boot boot boot boot bo	Université	rasbourg	EI EI	uropean ommission

Default Available EU Informations (mandatory)

Thank you for your attention

CT1 - Source apportionment

Exercise SA Practices Methods - comments

Velimir Milić Darijo Brzoja

Dublin, October 7, 2024.

DRŽAVNI HIDROMETEOROLOŠKI ZAVOD CROATIAN METEOROLOGICAL AND HYDROLOGICAL SERVICE

www.meteo.hr

Exercise

- Contribute designing an air quality plan in the framework of the EU directive over your chosen domain for PM.
- Consult all <default available EU information> (SHERPA, CAMS ACT, TOPAS...)

- Chosen domain was Zagreb FUA (Croatia)
- Long-term planning for PM10 using 2023. data

CT1 - Source apportionment : Exercise SA Practices Methods

Results : short overview

- All available sources were consulted
- GNFR 3 (C) has the largest influence on surface concentrations of PM10
- SHERPA
 - Largest annual average concentration of PM10 within FUA Zagreb is just over the proposed target value with 20.037 $\mu g/m3$
 - Reduction of GNFR 3 in Zagreb FUA by 30% would lead to reduction up to 1.361 $\mu g/m3$
 - Very probable additional benefit would be reduction of number of daily exceedances

www.meteo.hr

Aim of SA method – important questions

- We are not directly responsible for creating action plans, but we are obliged to provide support in identifying important sources, estimating impacts and providing comments on future plans.
- There are few important categories of questions:
 - How much of pollution is *"*local" (within control)
 - What are the dominant antropogenic sources of pollution within domain?
 - Estimating impact of specific scenarios.

Comments on available tools

- SHERPA (online dashboard)
- Source allocation sectoral : without reductions to get "baseline". Largest contribution from GNFR 3 (21.19%) followed by GNFR 2 with (7.84%) ...
- Source allocation precursors : without reductions to get "baseline". Largest contribution from PPM10 (36.4%) followed by NOx (6.22%)
- 3. Further exploration on possible impacts of specific reduction scenarios...

Comments on available tools

- CAMS ACT
- 1. Looks to be more oriented at short term plans, so i focused on D+0 horizon for multiple different dates
- 2. Looking at seasonal impacts, it is evident that GNFR 3 plays important role during winter
- 3. Very easy and intuitive to adjust scenarios and to illustate impacts
 - Example : pick a day with daily exceedance and see if proposed measures will be effective.

Comments on available tools

- CAMS : EMEP-SR, LOTOS-EUROS, CHIMERE
- All available tools provided are very informative and provided consistent results
 - 1. country potential impact : about 50% pollution is from outside HRV
 - 2. Sector apportionment : GNFR C stands out
 - 3. Chemical speciation

CT1 - Source apportionment : Exercise SA Practices Methods

TOPAS

- One of the first available tools that was used.
 - 1. Country and sector relative contribution (tagging)
 - 2. Speciation data for entire year can be downloaded for specified cities (including Zagreb)
 - Results show that largest impact comes from GNFR C (29.4%) and local contributions (HRV 63.5%)

General comments

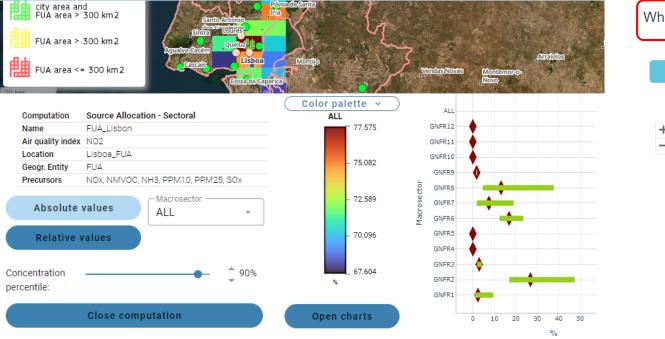
- Available policy tools provide excelent starting point
- It would be nice to see/hear feedback from other interested parties (policy makers...)

Experience with SHERPA/CAMS-ACT for Portugal

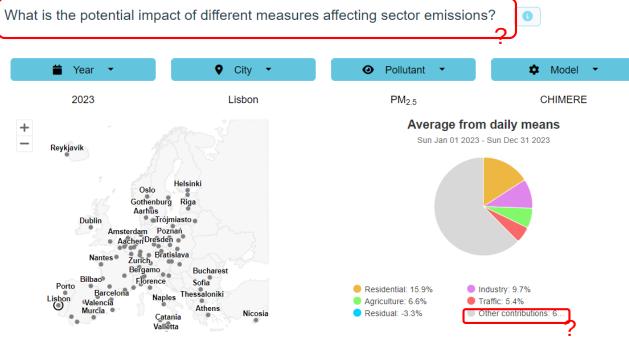
Alexandra Monteiro, Laura Silveira University of Aveiro, Portugal

Default Available EU Informations

(mandatory)

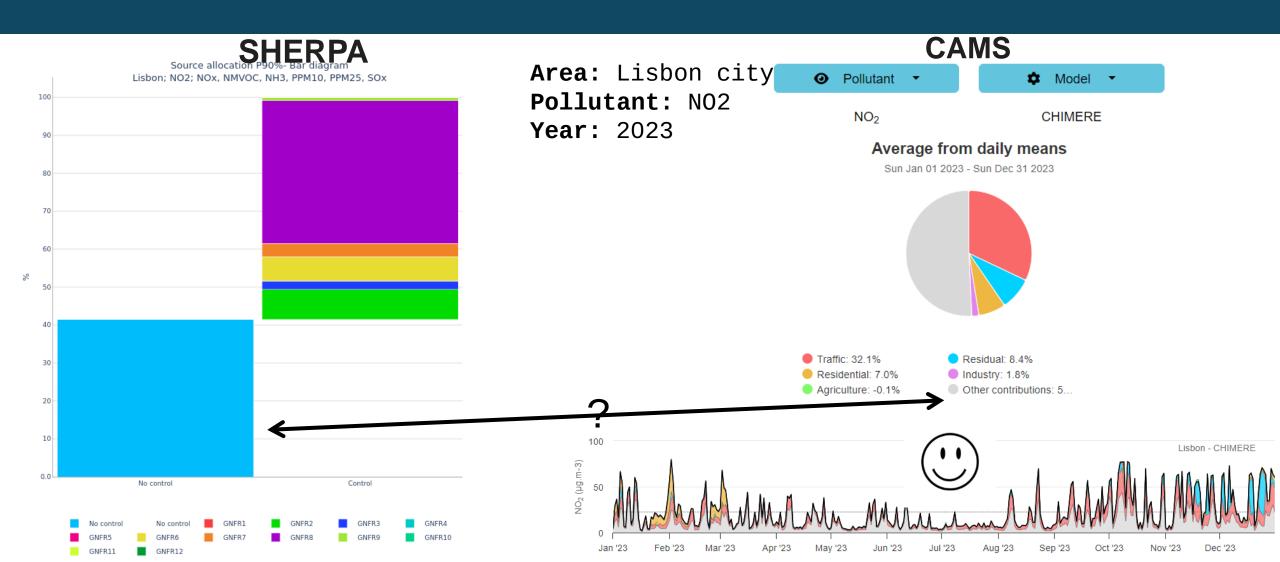

		METHOD			INDICATORS			RECEPTORS			
Name of the method and type (tagging, brute force,…)	Goal	Link	Modelling cha	racteristics	For which indicator is the SA performed?	Which emission pollutants?	Which emission sectors?	Over which time period?	Areas	Over which time average period	which spatial average area
			Spatial coverage & resolution	Temporal coverage & resolution	\checkmark	\checkmark					
(brute force - source		https://aqm.jrc.ec.europ a.eu/Section/Sherpa/Back ground	Fllat 6 km	Year based on hourly data	PM2.5 yearly average	NOX, NH3, SO2, PPM25	Transport, residential, agriculture, shipping, industry,	yearly	City core (e.g. Paris intra-muros), greater city (e.g. Ile de France), country, EU	yearly	hot-spot concentratio n grid-cell within the core city
CAMS/EMEP SR (emission perturbation/b rute force impact)		<pre>https://policy.atmospher e.copernicus.eu/yearly_a ir_pollution_analysis/co untry_impact.php https://policy.atmospher e.copernicus.eu/daily_so urce_attribution/country _impact.php</pre>	(30-72°N 30°W-45°E)		PM10, PM2.5,	NOX, NH3, SOX, PPM25, PPM10, NMVOC	Countries	Long term	City (ca 42x42 km2), country, shipping, BIC	Hourly, daily, yea rly Since 2019	80 EU cities (average of grid cells correspondin g to ca 42x42 km2)
Air Control Toolbox (Emulator of emission perturbation/b rute force - impact)		https://policy.atmosp here.copernicus.eu/da ily_source_attributio n/sector_apportionmen t.php	(30-72°N			NOX, NH3, SOX, PPM25, PPM10, NMVOC	Transport, residential, agriculture, shipping, industry, other	Long term	EU	daily, yea rly Since 2023	80 EU cities (average of grid cells correspondin g to ca 42x42 km2)
LOTOS-EURO S tagging		https://policy.atmospher e.copernicus.eu/yearly_a ir_pollution_analysis/co untry_contribution.php https://policy.atmospher e.copernicus.eu/daily_so urce_attribution/country _sontribution.php	(30-72°N 30°W-45°E) 8.2x0.1°		PM10, PM25 (other species available on TOPAS site)	NOX, NH3, SOX, PPM25, PPM10, NMVOC	Countries (sectors available on TOPAS site)	Long term	Countries, shipping, BIC	Hourly, daily, yea rly Since 2019	80 EU cities (average of grid cells correspondin g to ca 42x42 km2)
							Energy, Residential combustion, Industry, Fuel production, Solvent use, Road		Countries		

1. What question are you trying to answer when you use a Source Apportionment method?

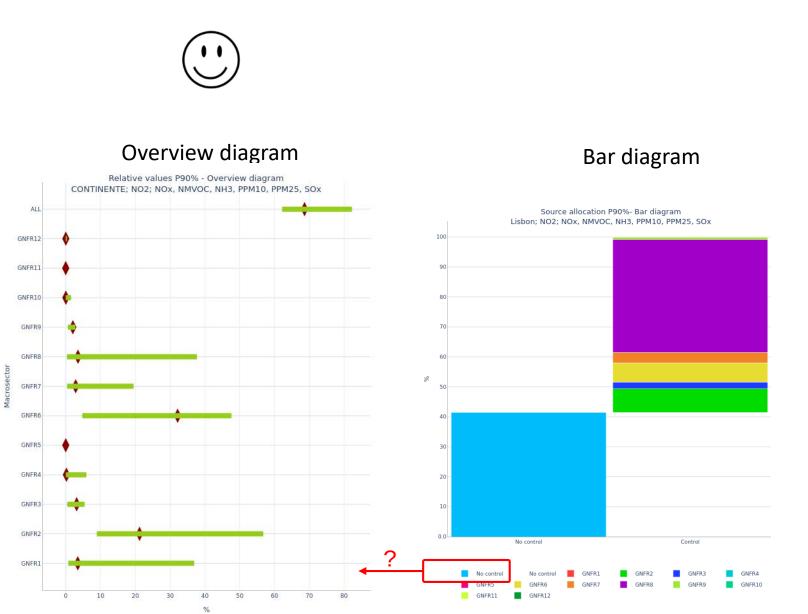

- What is the relative contribution of the various emission sectors?
- What is the potential impact of different measures affecting sector emissions?

2. How did you arrive at your conclusions based on the tools you used?

Area: Lisbon city
Pollutant: NO2
Year: 2023



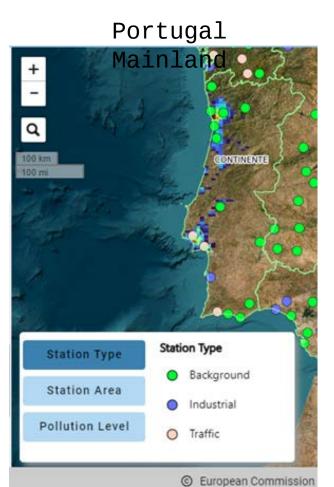
Yearly air Pollution analysis/Sector apportion

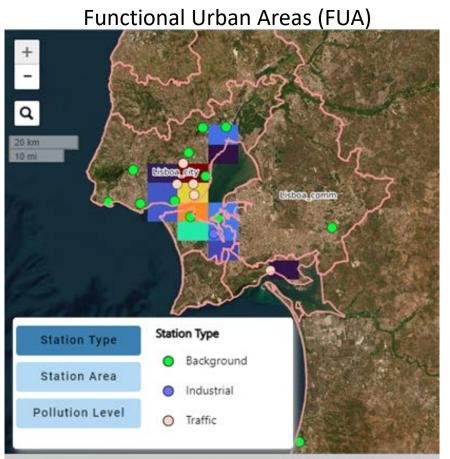


© European Commission - Joint Research Centre

2. How did you arrive at your conclusions based on the tools you used?

SHERPA: diversification in plotting results



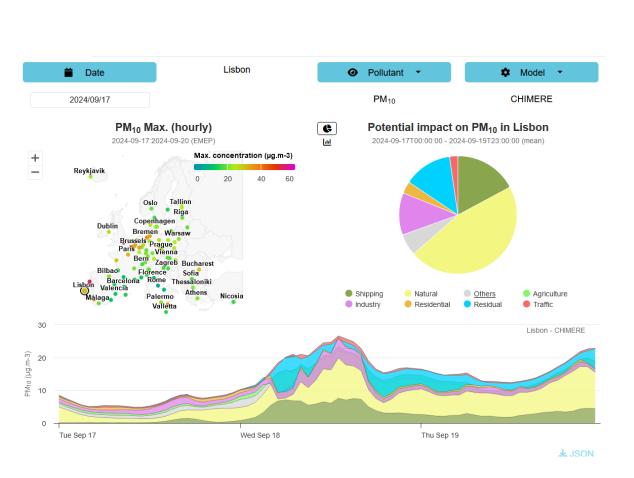

Absolute/relativ

NO2	Mainland							
Sectors	Values	Rel. values %)						
All	5.36	68.63						
GNFR12	0	0.03						
GNFR11	0	0						
GNFR10	0	0.04						
GNFR9	0.15	2.05						
GNFR8	9.02	3.52						
GNFR7	0.28	2.85						
GNFR6	2.45	32.15						
GNFR5	0	0						
GNFR4	0.02	0.19						
GNFR3	0.25	3.13						
GNFR2	1.59	21.21						
GNFR1	0.27	3.46						

SHERPA: spatial analysis

© European Commission - Joint Research Centre

Lisbon region


[©] European Commission - Joint Research Centre

CAMS-ACT: daily/episode analysis

Targeted cities

Custom scenarios (ACT)

Chemical Regimes

Pollutant Forecast Base Time Valid Time PM10 (daily mean) -2024-10-03 2024-10-03 -Chemical regime for daily mean PM10 concentrations in Paris (µg/m3) Forecast issued 2024-10-03, valid 2024-10-03 (D+0) Target city . Paris Emission sector for x-axis 8 80 Traffic Industry 99 O Residential Agriculture 읒 O Shipping O Other sectors* 50 Emission sector for y-axis Industry 0 O Residential 60 80 100 Agriculture 20 40 0 O Shipping Traffic emission reduction (%) O Other sectors* * 'Other sectors' includes Solvents, Aviation, Offroad, Waste and GNFR 'Other' sector Custom scenarios (ACT) Chemical Regimes Targeted cities Pollutant Forecast Base Time Valid Time Custom scenari 8 2024-10-02 PM10 (daily mean) . Total concentration Occentration ○ Absolute difference ○ Relative difference Anthropogenic fraction PM10 daily mean (µg/m³), 2024-10-02 D+0 Design your emission scenario µg/m (uniform reduction) Traffic reduction: 100% 3 Industry reduction 0% reduction: 100% Residentia reduction: 0% reduction 100% Agriculture reduction: 0% reduction 100% Shipping reduction: 0% reduction 100% entributors, CO BV-S PM10 (daily mean) reference map including the main anthropogenic sources (agriculture, industry, traffic, residential heating, shipping and other). The natural emissions (such as dust or sea salt) as well as other hemispheric sources Other sectors are excluded. reduction 100% 🛓 Get map

3. What issues did you find when answering the survey? What suggestions can you make to improve it?

SHERP

Advantages:

- Provides a more detailed mapping of the sectoral analysis of the contribution to pollution
- Offers absolute and relative potential pollutant concentrations for each sector

Limitations: temporal analysis

Advantages:

 Overview related to temporal analysis over a one-year period and regional influences on the impact of emissions

CAMS-

ACT

- Useful for regional assessments and for understanding the impact of international and natural contributions
- Provides a more detailed temporal analysis and territorial boundaries of the contribution pollutants

Limitations: spatial analysis.

3. What issues did you find when answering the survey? What suggestions can you make to improve it?

- Clarify and distinguish the purpose of the different tools. It would be an advantage to have different tools for different goals/purposes
- GNFR vs SNAP?? More homogeneity?
- "Sector apportionment" & "potential impact of measures"?