Senatsverwaltung für Mobilität, Verkehr, Klimaschutz und Umwelt

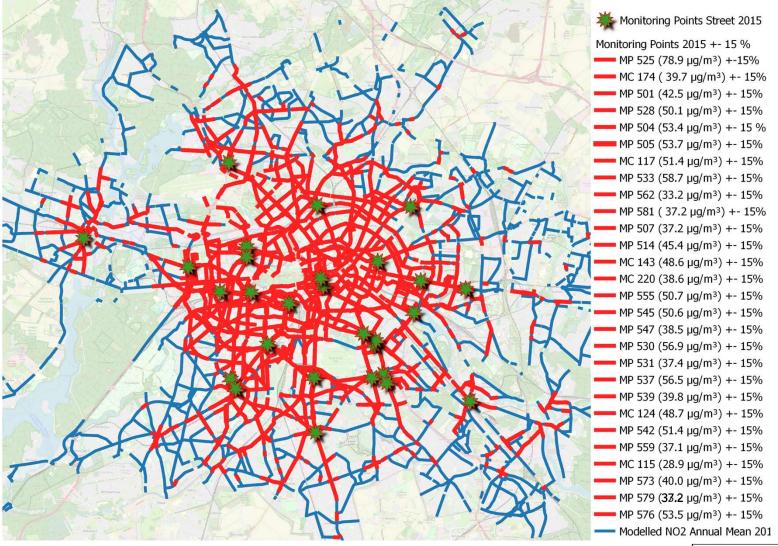


## FAIRMODE WG8 SPATIAL REPRESENTATIVENESS -STREET CANYONS - BERLIN

Dr. Andreas Kerschbaumer

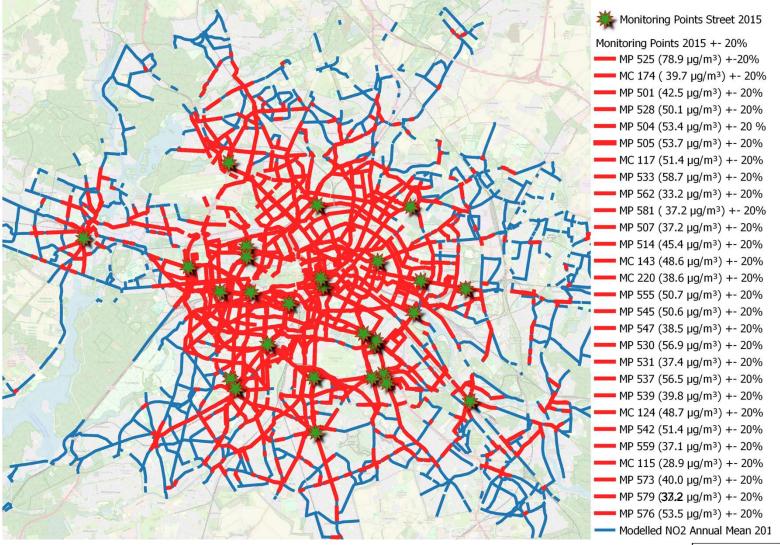
Senate Department for Urban Mobility, Transport, Climate Action and the Environment Unit: Air Quality Planning

## **General information:**


- City of Berlin, Germany.
- Year: 2015
- Pollutant: NO<sub>2</sub> annual mean
- Type of model: Street Canyon IMMIS<sup>Luft</sup> (Canyon Plume Box (CPB) based dispersion model for predicting air pollutant concentrations near roadways), screening model
- Model scale: road sections from junction to junction (lines)
- <u>no</u> bias adjustment
- Monitoring stations: urban traffic

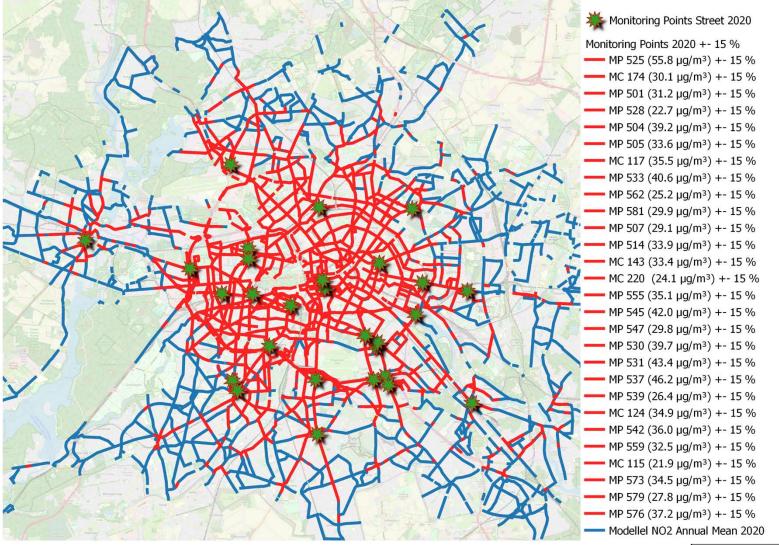
Sampling points shall in general be sited in such a way as to avoid measuring very small micro-environments in their immediate vicinity, which means that a sampling point must be sited in such a way that the air sampled is representative of air quality for a street segment no less than **100 m length** at traffic-orientated sites [...]

[...] for all pollutants, traffic-orientated sampling probes shall be at least **25 m from the edge of major junctions** and no more than 10 m from the kerbside.



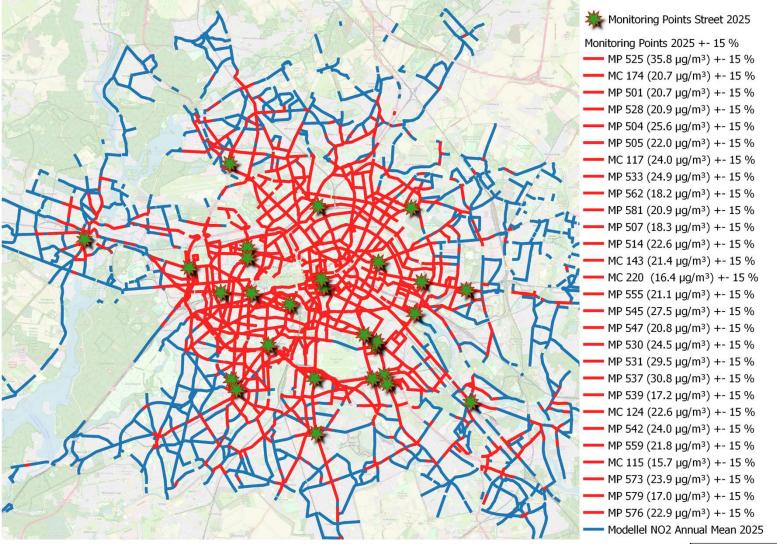

### 2015 NO<sub>2</sub>: urban traffic sites - tolerance level +- 15 %






### 2015 NO<sub>2</sub>: urban traffic sites - tolerance level +- 20 %






# 2020 NO<sub>2</sub>: urban traffic sites - tolerance level +- 15 % (same meteorology as for 2015)





# 2025 NO<sub>2</sub>: urban traffic sites – tolerance level +- 15 % (same meteorology as for 2015)





## NO<sub>2</sub>: urban traffic sites: Summary

- Tolerance level does not influence the spatial representativeness of Berlin's traffic monitoring sites for NO<sub>2</sub>
  - $\circ$  NO<sub>2</sub> levels are high
  - traffic monitoring sites shall represent streets with expected highest NO<sub>2</sub> burden
  - $\circ$  low level NO<sub>2</sub>-streets are not represented by traffic monitoring sites
- Absolute NO<sub>2</sub> levels do not influence spatial representativeness of Berlin's traffic monitoring sites for NO<sub>2</sub>
  - o for different years with declining NO<sub>2</sub> levels (2015 -> 2020 -> 2025) the same spatial representativeness of Berlin's traffic monitoring sites for NO<sub>2</sub> is observed
- Number of traffic monitoring sites for NO<sub>2</sub> does not change overall picture of spatial representativeness of Berlin's traffic monitoring sites
  - $\circ$  traffic monitoring sites shall represent high polluted streets.
  - $\circ$  required number of sites is sufficient
  - indicative measurements gives indication of special circumstances at specific street, but are not necessarily needed for better spatial representativeness



## NO<sub>2</sub>: urban traffic sites 2015

#### Measurements vs. modelled values for 2015

- 28 urban traffic <u>monitoring</u> sites:
  - o 6 automatic monitoring station: temporal resolution: 1 hour
    - reference measurements
  - o 22 passive samplers: temporal resolution: 2 weeks
    - indicative measurements
    - reliable for annual means
- <u>Modelled</u> NO<sub>2</sub> annual mean values for appox. 1.125 km street lengths
   IMMIS<sup>luft</sup> street canyon model gives only annual mean values
- Measurements vs. model application: min max annual means for NO<sub>2</sub>
   min: measured: 41 µg/m<sup>3</sup> vs. modelled: 10 µg/m<sup>3</sup>
   max: measured: 73 µg/m<sup>3</sup> vs. modelled: 90 µg/m<sup>3</sup>



## NO<sub>2</sub>: urban traffic sites 2015: SR discussion

#### Measurements - modelled values at urban traffic monitoring sites: <u>comparable sites</u>

Measurements vs. model application: min - max at monitoring sites

 min: measured: 41 µg/m<sup>3</sup> vs. modelled: 37,2 µg/m<sup>3</sup> (good agreement)
 max: measured: 73 µg/m<sup>3</sup> vs. modelled: 78,9 µg/m<sup>3</sup> (good agreement)

## Proposed Cut-off consideration not relevant for NO<sub>2</sub>-annual mean concentrations at Berlin in 2015

#### Overlapping spatial representative areas

- NO<sub>2</sub>-monitoring sites at points where high values are expected
- Low values at urban traffic sites are not relevant/interesting within AAQD
- At many NO<sub>2</sub>-monitoring sites similar values are measured
  - $\circ$  4 sites with values between 40 and 45  $\mu$ g/m<sup>3</sup>
  - $\,\circ\,$  4 sites within values between 46 and 50  $\mu g/m^3$
  - $\circ$  10 sites within values between 51 and 55  $\mu$ g/m<sup>3</sup>
  - $\circ$  3 sites with the same NO<sub>2</sub>-annual mean value of 59  $\mu$ g/m<sup>3</sup>
  - $\circ$  4 sites with the same NO<sub>2</sub>-annual mean value of 60 µg/m<sup>3</sup>
  - $\circ$  1 site with NO<sub>2</sub>-annual mean value of 65 µg/m<sup>3</sup>
  - $\circ$  1 site with NO<sub>2</sub> annual mean value of 73 µg/m<sup>3</sup>



## NO<sub>2</sub>: urban traffic sites 2015: SR discussion

#### Overlapping spatial representative areas

- At many NO<sub>2</sub>-monitoring sites similar values are measured
- These sites shall be representative also for other urban traffic sites, where no monitoring stations exist
  - Less kerbside monitoring sites seem to be sufficient -> "intelligent" monitoring network design necessary
- IMMIS<sup>luft</sup> is able to confirm this requirement
- Tolerance level (+- 15% or +- 20%) is not essential for fulfilment of this requirement and has only very low impact for fulfilment at kerbside monitoring sites

#### <u>BUT</u>

Spatial representativeness for low NO<sub>2</sub>-levels can not be checked by street canyon models if no NO<sub>2</sub>-low level measurements at urban traffic monitoring sites exist.

## NO<sub>2</sub>: urban traffic sites: SR some considerations / proposals

- Spatial representativeness checks of monitoring stations at urban traffic sites by model applications only useful / meaningful, if model applications are fit for propose -> especially at urban traffic site scale and for high NO<sub>2</sub>-concentration levels
- If spatial representativeness checks by model applications also at low NO<sub>2</sub>-levels at kerbside sites desired,
  - o <u>Specific measurements needed</u>
    - few indicative measurements seem to be sufficient and/or financially justifiable (especially for model validation proposes)
  - <u>OR</u>
    - <u>better definition of urban traffic kerbside monitoring sites</u>
      - cut-off for traffic load: e.g. only streets with DTV > 15.000 vehicles
      - $\succ$  streets with buildings on (both) sites
      - $\succ$  cut-off for gaps between buildings: e.g. gaps on street section < 50 %
    - <u>exclude streets which do not fulfil the above proposed definitions in checking</u> spatial representativeness of monitoring stations at urban traffic sites



## PM<sub>10</sub>, PM<sub>2.5</sub>: urban traffic sites: SR

- Measurements of PM<sub>10</sub> and PM<sub>2.5</sub> at traffic monitoring sites:
  - PM<sub>10</sub>:
    - 2017: between 23  $\mu$ g/m<sup>3</sup> and 28  $\mu$ g/m<sup>3</sup> annual mean (background: 16 - 22  $\mu$ /m<sup>3</sup> annual mean)
    - 2020: between 18 μg/m<sup>3</sup> and 22 μg/m<sup>3</sup> annual mean (background: 14 - 18 μg/m<sup>3</sup> annual mean)
    - 2023: between 17 μg/m<sup>3</sup> and 20 μg/m<sup>3</sup> annual mean (background: 13 – 17 μg/m<sup>3</sup> annual mean)

• PM<sub>2.5</sub>:

- 2017: between 16  $\mu g/m^3$  and 19  $\mu g/m^3$  annual mean (background: 12 16  $\mu/m^3$  annual mean)
- 2020: between 12 μg/m<sup>3</sup> and 13 μg/m<sup>3</sup> annual mean (background: 9 - 12 μg/m<sup>3</sup> annual mean)
- 2023: between 11 μg/m<sup>3</sup> and 12 μg/m<sup>3</sup> annual mean (background: 9 - 10 μg/m<sup>3</sup> annual mean)
- Spatial representativeness considerations for PM<sub>10</sub> and PM<sub>2.5</sub> at street monitoring sites completely different as for NO<sub>2</sub>
- <u>Special considerations regarding spatial representativeness for traffic sites (at least for PM<sub>2.5</sub>) not needed</u>



# Thank you for your attention

Dr. Andreas Kerschbaumer

andreas.kerschbaumer@senmvku.berlin.de

Senatsverwaltung für Mobilität, Verkehr, Klimaschutz und Umwelt

