

CT8 – #1: SPATIAL REPRESENTATIVENESS OF MONITORING STATIONS

TOWARDS RECOMMENDATIONS

STIJN JANSSEN, LEONOR TARRASON

AGENDA

- » Summary of the CT8 session at the Technical Meeting (Stijn)
- » Review of the proposed SR methodology (all)
- » Topics for further analysis (all)
- » EU wide benchmark data set with uEMEP (Bruce)
- » Towards a FAIRMODE recommendation (all)

CT8.1 EXERCISE

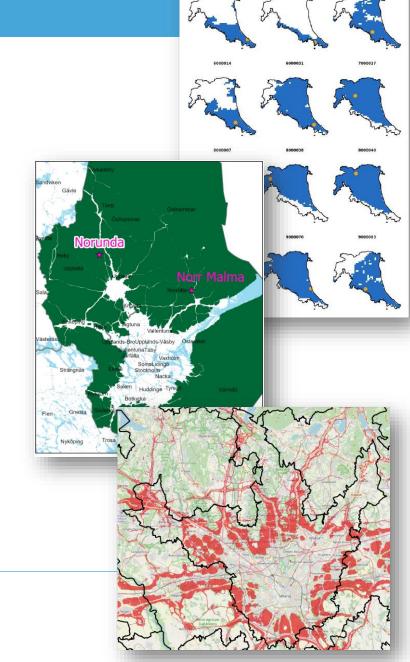
Test the Spatial Representativeness recipe and provide input for FAIRMODE Recommendations

- Make use of your existing modelling results
- Apply the recipe to delineate an SR area for a number of "interesting" stations in your country (rural, urban background, traffic, industrial)
- Optional: perform your own sensitivity analysis on threshold values, contiguity, similarity criterion, lower cut-off, station type
- Optional: Compare these SR areas to results of other SR assessment methodologies used in your region/country

SUGGESTION FOR A SR DEFINITION / RECIPE

- Discontiguous SR area
- Similarity criterion: annual mean concentrations
- Threshold value: 20% with absolute cutoff for low concentrations
- Limit SR area to the IPR AQ zone
- NO₂, PM₁₀/(PM_{2.5}), O₃

→ Use modelled concentrations at station location (assuming bias is small → fit-for-purpose model)


PARTICIPANTS CT8.1

Name	Country/Region
Vasiliki Assimakopoulou, Kyriaki-Maria Fameli	Athens
Doreen Schneider, Christiane Lutz-Holzhauer	Baden-Württemberg
Andreas Kerschbaumer	Berlin
Michele Stortini, Roberta Amorati	Emila Romagna
Bruce Rolstad Denby, Eivind Grøtting Wærsted	Norway / Europe
Alicia Gressent	France
Bonafè Giovanni	Friuli Venezia Giulia
Stephan Nordmann	Germany
Antonio Piersanti	Italy
Jutta Geiger	North Rhine-Westphalia
Grzegorz Jeleniewicz	Poland
Alexandra Monteiro	Portugal
Angela Morabito, Ilenia Schipa, Francesca Intini	Puglia
Susanne Bastian, Uwe Wolf, Martina Strakova	Saxony
Katrin Zink	Schleswig-Holstein (Northern Germany)
Fernando Martin	Spain
Kristina Eneroth	Stockholm County
Matthew Ross-Jones, Hilma Engholm	Sweden
Bianca Patrizia Andreini, Chiara Collaveri, Francesca Calastrini, Caterina Busillo, Francesca Guarnieri	Tuscany 5

LESSONS LEARNT

The good news:

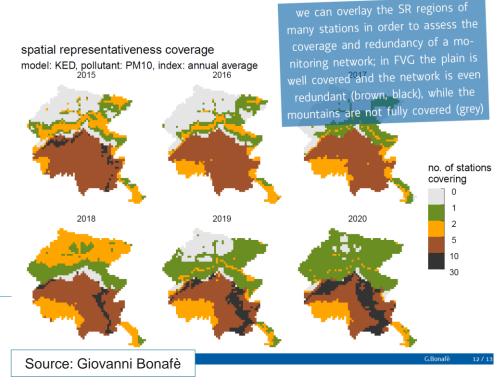
- » Spatial Representativeness is essential information of a monitoring station and links to many elements in the AQD
- » Models become fit-for-purpose to assess SR at all spatial scales and all station types
- » FAIRMODE has a much more harmonized view on the subject than few years ago
- » So... we're making significant progress. Eventually!
- → thanks to all the enthusiastic participants for their contributions

Pianura Est

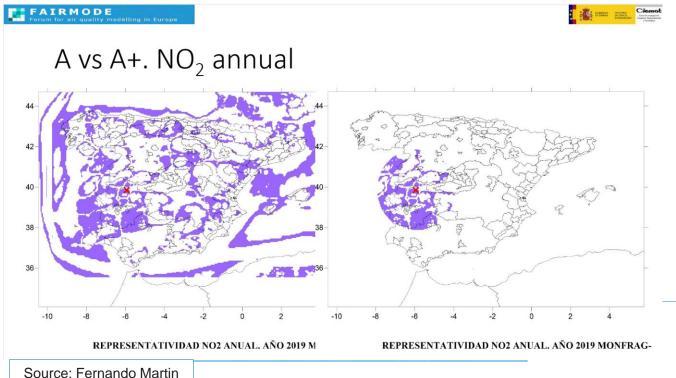
WHAT IS THE PURPOSE OF SR?

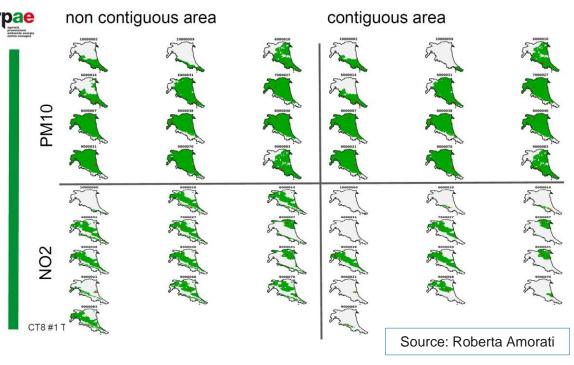
Statement by Stephan Nordmann

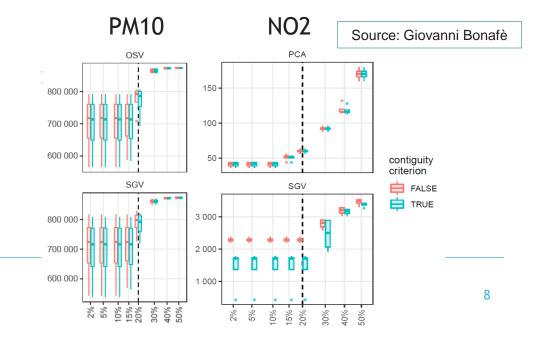
What is the reason for this approach? According to Annex III B in the AQD (macroscale siting) representative areas of sampling points are relatively unspecific (e. g. several km² for background sites).


- > Is it really necessary to have such detailed information about the representative area?
- What question should be answered with that?

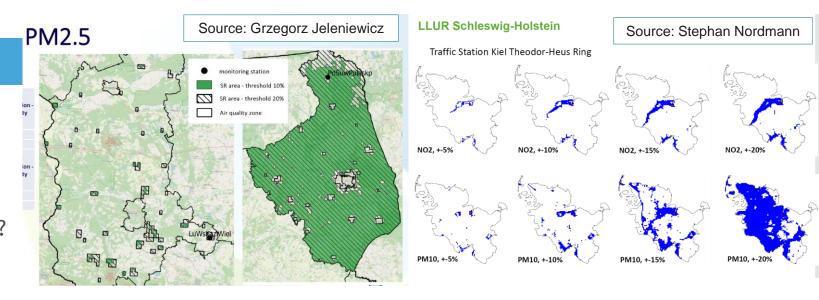
> Is it even possible to give such a detailed information, because the conditions around the sampling points

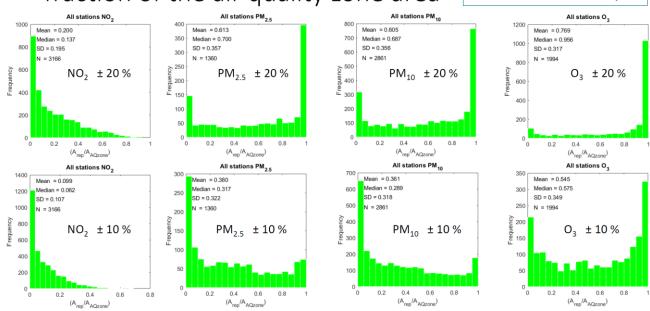

are changing (e. g. meteorology)?


- → SR is requested via e-Reporting as an indicator of a monitoring station → formal obligation under AAQD
- → SR application domains:
 - → Exceedance situation indicators
 - → Population exposure
 - → Model validation & data assimilation
 - → Network design

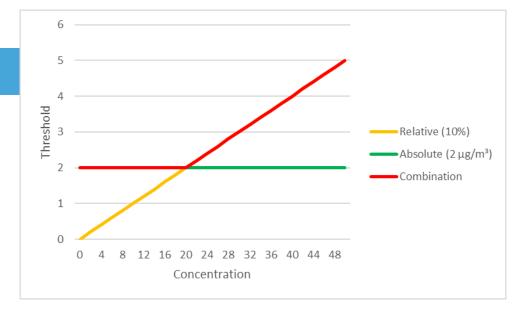


- » Contiguous vs discontiguous area's
 - » Most relevant for NO2, less for PM10
- » Boundaries based on AQ zone → if needed can be made smaller (expert based correction)
 - » Not always useful → less sensitive for lower thresholds
 - » Any alternative?



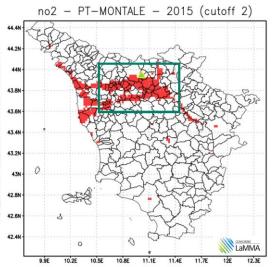

Source: Kristina Eneroth

- » Threshold (or tolerance) in similarity criterion:
 - » 5% 20% → 10% seems to be a good compromise but what with measurement and model uncertainty?
 - » Pollutant dependent?
 - » Station type dependent?

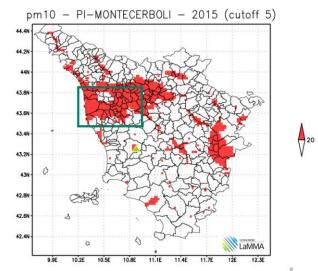


Torkel Kn, Stockholm • PM10 yearly mean: 11.2 μg/m³ • ± 20 %: 8.9 – 13.4 μg/m³ • ± 10 %: 10.1 – 12.3 μg/m³ • ± 5 %: 10.6 – 11.7 μg/m³ • ψρραία να καιναία να καινα

Spatial representativeness area shown as a fraction of the air quality zone area Source: Bruce Denby

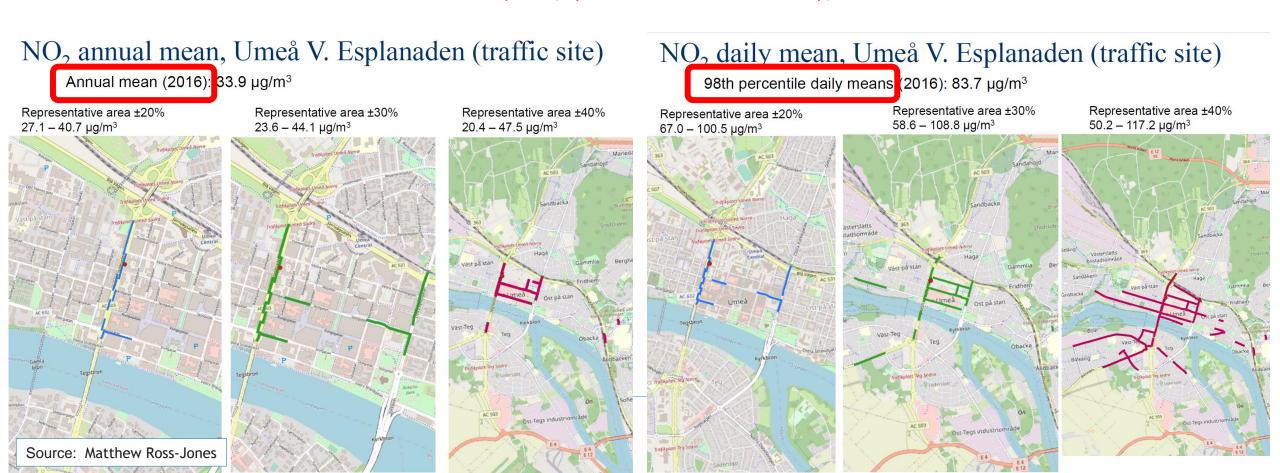

- » Threshold (or tolerance) in similarity criterion:
 - » Relative or absolute threshold (or combination)?
 - » Arguments so far:
 - » Relative criterion → allows for a better comparison between stations, but problematic for low (and high?) concentrations
 - » Absolute criterion → relevant for low concentrations
 - » Combination: increases the SR area in the low ranges
 - \rightarrow Low cut off (2 µg/m³?)
 - → 10% ?
 - → High level concentrations → higher value needed to reflect complexity in urban environment → 20%?
 - → test measurement uncertainty curve of MQI
 - → Can variability in the SR area be used as criterion?

RESULTS-NO2


Current SR of the station point PT-MONTALE (red pixels)

RESULTS-PM10

Current SR of the station point PI-PASSI (red pixels)
The coastal area in the PISA surroundings, in the new
SR, it seems to be is represented by an inner station
point (PI-MONTECERBOLI) with a very different
geographical properties.



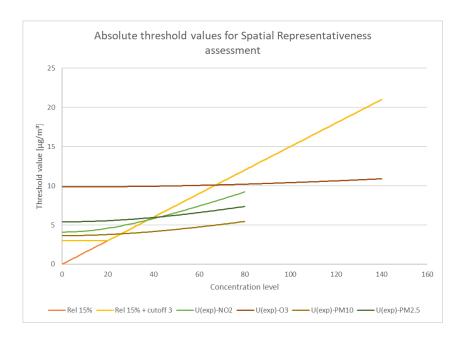
New SR of the station point PI-MONTECERBOLI (red pixels) with a threshold of 20% and cutoff $5\mu g/m^3$

Source: Francesca Guarnieri

New SR of the station point PT-MONTALE (red pixels) with a threshold of 20% and cutoff $2\mu g/m^3$

- » Similarity criterion: simple "annual mean" or more complex definitions: source dependent, seasonal mean, percentiles...?
 - → let's start with something simple but maybe not sufficient!
 - → More tests welcome! Both on sources and percentiles → application domain (eg. exceedance estimation) might be leading here
 - → Source information is relevant for AQ Planning
 - → Source info is relevant for communication to the public (expert corrections could be first step)

- » Inter-annual variability of the SR area: a matter of fact or a problem?
 - → it is just a reality !??
 - → depends on the application domain
 - → exceedance situation estimation → annual reporting requires annual SR values/assessment
 - → monitoring design → inter-annual variability should be averaged out
 - → needs further testing, impact of lower cuttof might be important here as well!
- » Modelling requirements:
 - » model (resolution) dependency? → station type puts requirements for spatial resolution of the model. Model should be able to describe what is happing in "reality" → it is prefered to base evaluation on MQO (if possible)
 - » bias between model and station values → what is acceptable? → model should be fit-for-purpose!??
 - → traffic stations might be problematic due to bias → if you miss a source
 - → Put a cutoff on the bias that is acceptable, link with MQI/MQO
 - → Test on the bias/MQO (per station ?)


TOPICS FOR FURTHER ANALYSIS

- » Benchmarking with a EU wide data set based on uEMEP (Bruce)
 - » Compare SR area per station for all EU \rightarrow data available in an Excel sheet for 10%, 20% (incl cutoff of 2µg/m³) for NO2, PM10, PM2.5 and O3 \rightarrow only values for area, no shape files
- » New tests:
 - » MQO curve for thresholds
 - » Impact of lower cutoff
 - » Different cutoffs for rural/urban & traffic stations?
 - » MQO requirement on model/station bias → minimum level required?
 - » Inter-annual variability → how big is this?
 - » (Source dependency → feasible? What does it bring extra?)
- » Recommendations:
 - » What do we report? What is managble? Should be part of the recommendations → shape files?

CONCLUSIONS OF THE MEETING

- » SR area is defined:
 - » in a discontiguous approach
 - » limited by the AQ zone → if needed the area can be reduced (e.g. based on expert opinion)
- » SR similarity criterion based on annual mean concentration (for the time begin), but:
 - » Test the possibility of a source specific SR → important for e.g. AQ planning
- » SR threshold as a 15% relative value with lower cut-off, but:
 - » Test various cut-off values (e.g. 2 4 μg/m³)
 - » Test the measurement uncertainty curves of the FAIRMODE MQI
- » SR inter-annual variability (e.g. due to meteo effects) is a reality, but:
 - » Relevance depends on the application domain → more testing to assess the impact
- » SR assessment requires a fit-for-purpose model with low model basis
 - » What is an acceptable bias at individual station location?
- » SR benchmarking against a uEMEP for all EU stations
 - » Compare bottom up analysis with uEMEP statistics
- » SR area can be reported as a shape in the e-Reporting

