

Overview of bias correction practices for AQ planning in Italy

Mihaela Mircea, Antonio Piersanti – ENEA Roberta Amorati, Michele Stortini – ARPAE Emilia Romagna Giulia Malvestiti, Loris Colombo – ARPA Lombardia Stefano Bande - ARPA Piemonte Marco Vecchiocattivi –ARPA Umbria

New AQD: Ambient air quality and cleaner air for Europe

text adopted 24 April 2024

Article 19 Air quality plans *and air quality roadmaps*

"Member States shall establish air quality plans for those zones that set out appropriate measures to achieve the limit value or target value concerned and to keep the exceedance period as short as possible, and in any case no longer than 4 years from the end of the calendar year in which the first exceedance was recorded. Those air quality plans shall be established as soon as possible and no later than 2 years after the calendar year during which that exceedance of any limit value or target value was recorded."

Table 1 – Limit values for the protection of human health to be attained by 1 January 2030

Averaging period	Limit value	
PM _{2,5}		
1 day	25 µg/m ³	not to be exceeded more than 18 times per calendar year
Calendar year	10 µg/m³	
PM ₁₀		
1 day	45 μg/m ³	not to be exceeded more than 18 times per calendar year
Calendar year	$20 \ \mu g/m^3$	
Nitrogen dioxide (N	NO ₂)	
1 hour	200 µg/m ³	not to be exceeded more than <i>3 times</i> per calendar year
1 day	$50 \ \mu g/m^3$	not to be exceeded more than 18 times per calendar year
Calendar year	$20 \ \mu g/m^3$	

Gridded model data versus Point measurements

-bias correction premises-

- 1) how to express the bias between model and measurement in a point
- 2) how to distribute the punctual bias over model grid

How to express the bias between model and measurement in a point

Bias correction (B) definition for base year:

Absolute: B_A=M_{ref}-O

Relative: B_R=(M_{ref}-O)/O

Fraction: B_F=O/M_{ref}

Where:

M_{ref}=modelled value for reference simulation (base year)

O=observation

B definition for base year	use of B	area of application
B _F	Model concentration at scenario year is multiplied by B _F	national, Lombardia
B _F	Model concentration at scenario year is multiplied by B _F	Po Valley (Life PREPAIR), Emilia- Romagna, Umbria
B _A	B _A to obtain adjusted base year simulation	Piemonte

How to distribute the punctual bias over model grid

B definition for base year	use of B	distribute B over grid	area of application
B _F	both base year and scenario year are multiplied by B_F	none, used at measurement points	national, Lombardia
B _F	both base year and scenario year are multiplied by B_F	adjustment factor map obtained from B_F spatialized with kriging	Po Valley (Life PREPAIR), Emilia- Romagna, Umbria
B _A B _F	B _A to obtain adjusted base year simulation	adjustment factor map for base year obtained from $\mathbf{B}_{\mathbf{A}}$ spatialized with kriging scenario year adjusted using $\mathbf{B}_{\mathbf{F}}$ calculated between adjusted and non-adjusted base year simulation	Piemonte

National Air Pollution Control Plan (ENEA for Min. Env.)

Request: Table of projected number of noncompliant and compliant zones for each AAQD pollutants

- Starting point: measured concentrations at background stations
- Target: projected concentrations at background stations
- = bias correction only at **stations**, testing both B_A and B_F

	Number of non- compliant air quality zones			non- Jality
	Specify baseline year	2020	2025	2030
PM _{2.5} (1 yr)				
NO₂ (1 hr)				
NO ₂ (1 yr)				
PM ₁₀ (24 hrs)				
PM ₁₀ (1 yr)				
O₃ (max 8 hr mean)				
Other (please specify)				

B_A vs **B**_F

B_F

WM		number of non-compliant and compliant zones - B _A			number of non-compliant and compliant zones - B _F		
		2020	2030	2010	2020	2030	
year	38	34	25	38	21	3	
hour	3	3	3	3	2	0	
year	13	8	5	13	1	0	
day	38	38	37	38	28	19	
year	9	4	1	9	1	0	
Daily max of 8h ayas	46	39	29	46	34	28	
	WM year hour year day year Daily max of 8h avgs	WM cor 2010 year 38 hour 3 year 13 day 38 year 9 Daily max of 8h avgs	number of non-comp compliant zonesWMcompliant zones20102020year383334hour3year13gear13day38year94Daily max of 8h avgs4639	number of non-compliant and compliant zones - BAWM201020202030year383425hour333year1385day383837year941Daily max of 8h avgs463929	Number of non-compliant and number of compliant zones - B _A com WM 2010 2020 2030 2010 2010 2020 2030 2010 2010 year 38 34 25 38 hour 3 3 3 3 year 13 8 5 13 day 38 38 37 38 year 9 4 1 9 Daily max of 8h avgs 46 39 29 46	Number of non-compliant and compliant zones - BAnumber of non-compliant zonesWM2010202020302010202020102020203020102020year3834253821hour33332year1385131day3838373828year94191Daily max of 8h avgs4639294634	

B₄

- NO_2 and PM, B_F follow better the decrease of emissions
- O₃ is less sensitive to the method probably due to the statistical indicator used and better model performances

ARPAE applications

Key issue: How spatialize f factor over model grid? Kriging is a possible choice, but which parameters?

exponential variogram is set, 3 possible type of external trend examined:

ID	description	formula		Pollutant	Trend ID
mo d	model and elevation	~ model + elevation	leave one out cross validation	PM10	log
log	modellog	~ log(model)+ elev		PM2.5	mod
	elevation		V	NO2	log
1st	spatial	~X+Y	minimize standard (error	

Cross validation of base case

	PM10 bias	PM10 rmse	NO2 bias	NO2 rmse	PM2.5 bias	PM2.5 rmse
adjusted mod	0.06	2.76	0.24	4.54	0.14	2.81
direct mod	-4.16	6.09	-5.010	7.92	1.31	3.62

Evaluation of different scenarios: PREPAIR project

https://www.lifeprepair.eu/wp-

content/uploads/2022/02/evaluation scenarios on air quality inPovalley-1.pdf

Planning Emilia-Romagna actions

https://ambiente.regione.emilia-romagna.it/it/aria/temi/pair-2030

Open questions

1) Which is the best way to express the bias between model and measurement in a point?

-pollutant type dependency, statistical indicator (mean or running mean), measurements representativity in relation to model spatial resolution, etc...

2) Which is the best way to propagate punctual model uncertainties due to model formulation, emissions and meteorology over the grid?

-pollutant type dependency, statistical indicator, measurements representativity in relation to model spatial resolution, etc...

3) Which is the best way to propagate base year model uncertainties due to model formulation, emissions and meteorology to scenario year?

-pollutant type dependency, statistical indicator, present or future meteorology, etc