

Contribution to CT5 "Key challenges"

Initially two different chapters:

- How to design measures on domestic heating, to reduce PM and benzo(a)pyrene
- How to implement actions to reduce PM

After some discussions combined into one (working title):

 How to design measures (on domestic heating?) to reduce PM and benzo(a)pyrene

> Focus on residential sector Species – PM10, PM2.5, B(a)P (?)

Contributors

- IEP-NRI Poland country scale (support to the National Air Quality Plan simulations provided to the Ministry of Climate and Environment once a year; 2.5km resolution)
- Ekometria Poland regional AQP
- ENEA Italy country scale
- SHMU Slovakia country scale (4.7km) / local scale (250m) in the scope of NAPCP

Call for contributors – if any team would like to report their results related to the residential sector measures and the impact on PM10/PM2.5/B(a)P

→ please join us ③

CT5 – residential sector challenges

- "Local problem" impact of individual source vs. "country-scale problem" a vast number of small sources in different regions
- Problems with emission estimation
 - Fuel mix not known (BU)
 - Emission factors (installation dependent) not known (BU)
 - Temporal variability highly uncertain and variable in time (BU/TD)
 - No good proxy to distribute total values (TD)
- Implementation is difficult (social habits, income level of individual household)

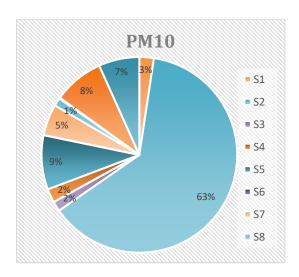
CT5 – residential sector challenges

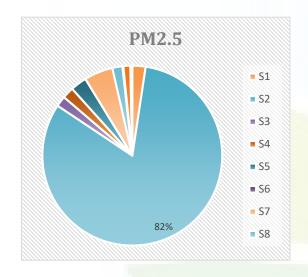
- Problem increasing in the continental climate zone (cold winter); problem increasing in the areas with complex topography (inversions)
- Strongly dependent on meteorology
 - emission intensity (temperature variability from October to April)
 - dispersion conditions (near-surface inversions, calms)

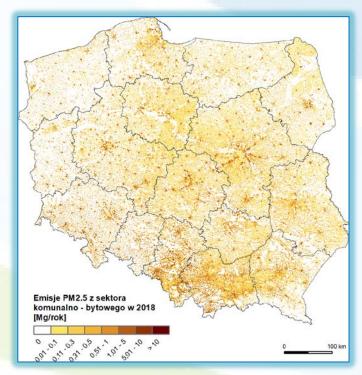
Chapter structure

General description of the approach

- Measures
- Emissions
- Concentrations
- Exposure / impacts (voluntary)


PM emission structure in Poland




 PM_{10} and $PM_{2.5}$: contribution from the residential sector is dominant

Highest emission in urban areas (in the case of biggest cities

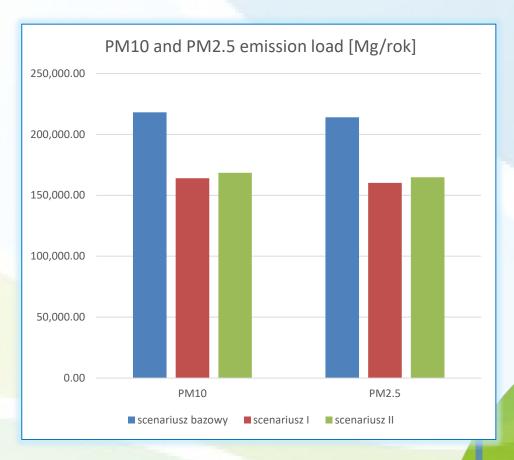
– in suburban zones)

S2 (SNAP2) – household heating

PM_{2.5} emission load in 2018

Poland: Assessment of "Clean air" programme

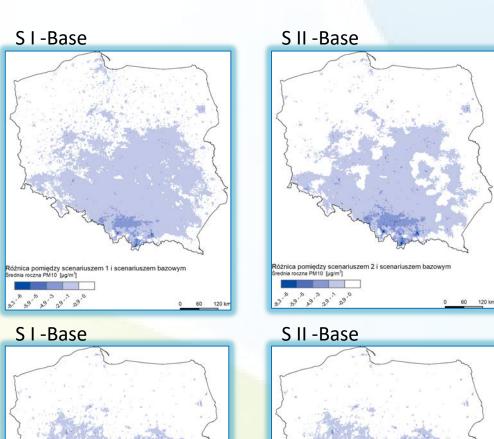
scenario assumptions


"Clean Air programme" aims to provide support for heating system modernisation and better insulation for homes. The *Clean Air* Programme is designed to reach 4.5 million households in Poland over the next ten years.

Base scenario – emissions reported in 2018

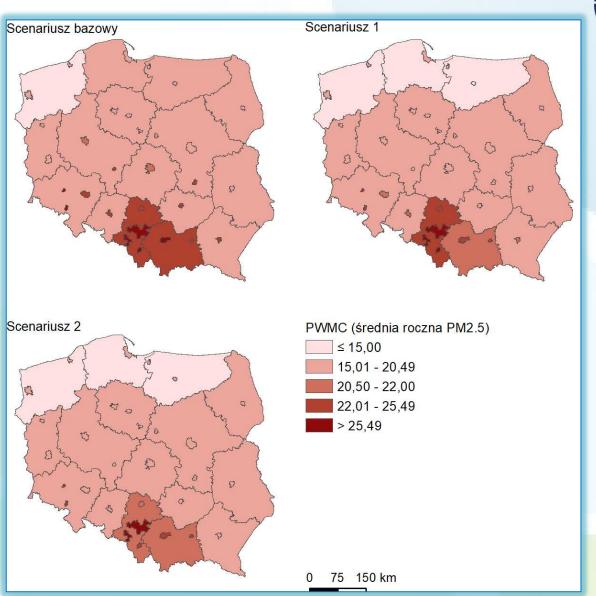
Future scenarios: exchange of furnaces in 2 million households (home insulation not considered)

Scenario I – uniform distribution over Poland, proportional in all administrative units (30% households)


Scenario II – action focused on administrative units with $PM_{2,5} > 20 \mu g/m^3$ (39% households)

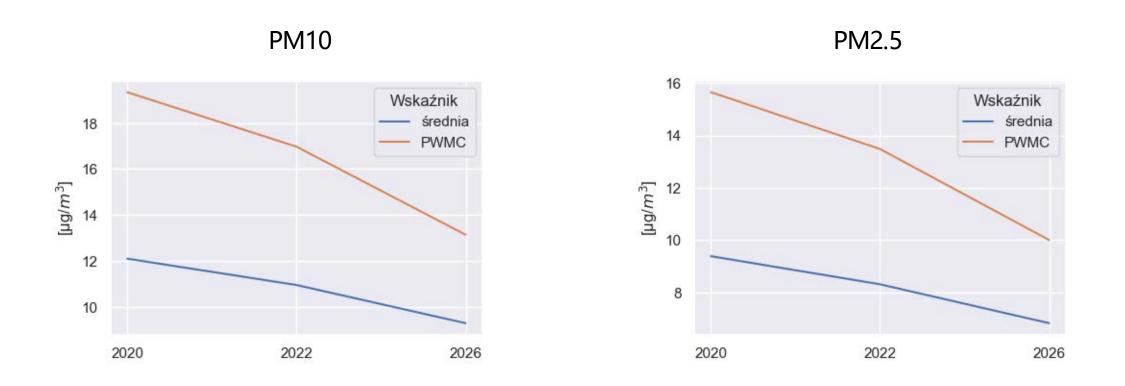
PM₁₀ reduction in Poland (Clean air Programme)

PM₁₀ annual average reductions

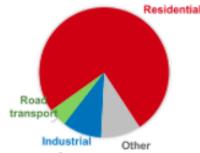

No of days $PM_{10} > 50 \mu g/m^3$ reduction

Health exposure

Population Weighted Mean Concentration (PMWC) shows significant improvement in the southern part of Poland and major cities


This indicator shows potentially higher impact of Scenario II

Trends of average PMs concentrations over Poland in 2022 and 2026 - joint effect of the implementation of regional AQP

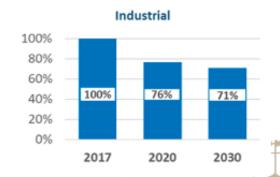

^{*} Red line – PMWC – Polpulation Weighted Mean Concentration

PM10 emission structure and measures Slovakia

Emission projections for whole Slovakia based on NAPCP

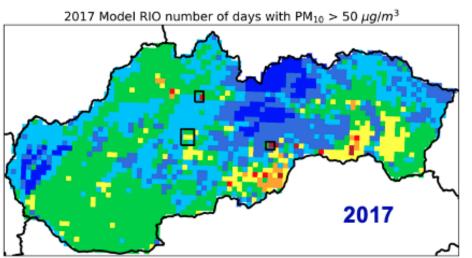
Emission sector	PM10 emissions (kT)		Emission reduction
	2017	2030	2030
Point sources	3.3	2.7	80%
Road transport	1.6	1.4	90%
Residential heating	25.9	17.5	67%
Other	3.5	25.1	
TOTAL	34.3	25.1	73%

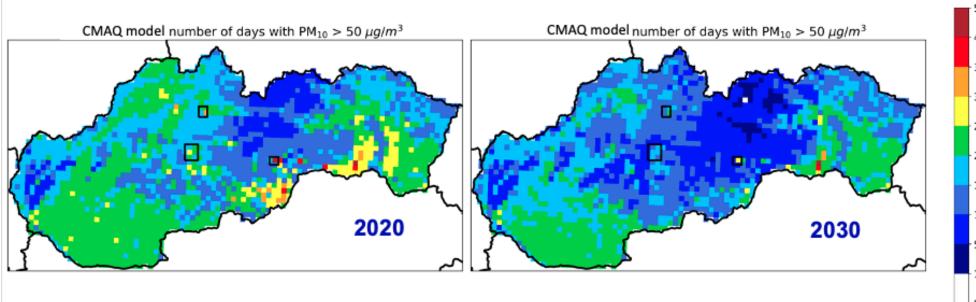
Emission after proposed reductions


Potential measures in the sector residential heating

- Incentives for replacement of unsuitable boilers: subsidy scheme
- Introduction of differentiated registration fees for different categories of heating devices to promote more environmentally friendly devices
- Connect households using wood or coal for heating to natural gas
- Fuel standards mandating the use of wood that has a moisture content of less than 25% Introduction a "control system" (based on the Czech model) each household that uses solid fuel would have an obligation to have their device regularly inspected.
- Awareness raising campaigns and education

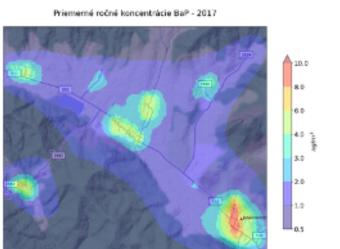
Ref.:Slovak Republic Air Protection Strategy, June 2019

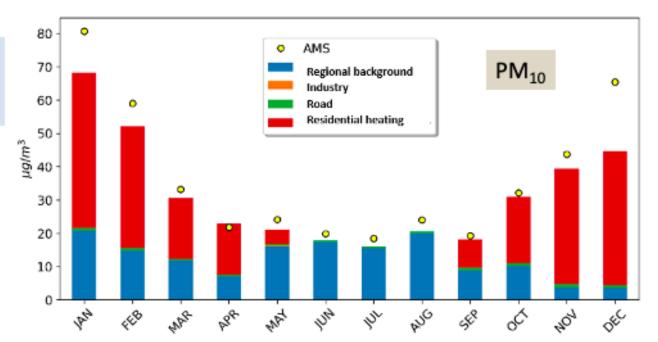


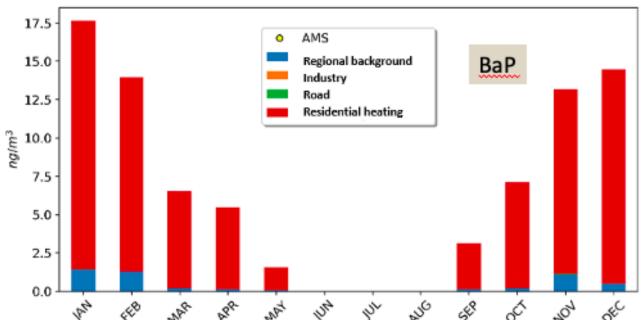

PM10 reduction in Slovakia due to NAPCP

National scale results (CMAQ, RIO)

PM10 Number of daily limit exceedances


Príspevky jednotlivých skupín zdrojov k priemerným mesačným koncentráciám PM10 Jelšava - Jesenského


PM10 and B(a)P source attribution in Slovakia – local scale


CALPUFF results Jelšava

Source apportionment

BaP annual mean

CALPUFF projections at monitoring stations (PM₁₀)

Monitoring station	Mean annual concentration		Number of daily exceedances	
Monitoring station	2017	2030	2017	2030
Jelšava	39.0	31.2	93	61
Banská Bystrica	28.4	24.9	44	25

Summary

Draft conclusions:

- Importance of the residential sector emissions different across Europe (linkages to CT1)
- Differences between TD and BU inventories (linkages to CT7)
- Results depends on the resolution and the domain size (linkages to CT9)
- A list of measures applied (to be applied) in different countries would be useful

Summary

Open questions:

- How to link actions/measures to emission processes (heat consumption → fuel used → fuel mix → emissions)
- Is the fuel mix temperature dependent? → evidence from PM2.5 chemical composition measurements in PL
- How to select base year "worst case scenario"?
- Shall we consider other sectors?

Summary

Early stage of the chapter compilation

Foreseen contributions from ENEA and Ekometria

Other groups invited to contribute ©

Potential inconsistencies between approaches

Thank you

Joanna Struzewska joanna.struzewska@ios.edu.pl