MET Norway contributions to CT9 intercomparison exercise

Eivind G. Wærsted, Bruce R. Denby, Qing Mu Norwegian Meteorological Institute

FAIRMODE Technical Meeting, 7. oct. 2021

Background

Model setup:

- 1. EMEP MSC-W chemistry–transport model (EMEP model) -> 2.5–10 km resolution (0.1° for CT9)
- 2. Urban EMEP (uEMEP): Gaussian modelling of nearby sources -> 50-250 m resolution (250 m for CT9)
 - High-resolution emissions must be available

Applications

- Air pollution forecasts for all of Norway at high resolution, for PM, NO₂ and ozone
- Assessment of population exposure in Norway, for past years and future scenarios
- Assessment of exposure for all of Europe for future scenarios, used by European Commission for AAQD revision

*Example from Europe runs (near Milan): Annual mean NO*₂ (Mu et al., in review)

Contribution to the CT9 exercise

Contributions:

- All cities
- Only annual mean for full-year cases
- Only PPM and NO_x reduction scenarios

Timeplan:

- Already delivered: Annual means + 6 episodes
- We may deliver more episodes if requested

Model setup for CT9 runs

Step 1: Eulerian CTM (EMEP model)

- Run all of Europe at 0.1° resolution
- Use reported EMEP emissions (0.1° resolution)

Step 2: Gaussian plumes (urban EMEP)

- Receptor grid covering the city at 250 m resolution
- Proxy data to get emissions at 250 m resolution:
 - Traffic (GNFR 6): Open street maps
 - Residential combustion (GNFR 3): Building density & population
 - Shipping (GNFR 7): AIS data (ship positions)
- Sources closer than 1.5 grids (about 15 km) are downscaled
- Chemistry: Only simplified NO₂–O₃ interaction (Düring scheme¹)

Step 3: Use EMEP local fractions to avoid double-counting

Avoiding double counting

EMEP local fractions

- Each cell knows how much each nearby cell contributes
 - > "tagging": but primary pollutants only!
- Info given per GNFR sector
- Can distinguish what comes from "near", "far" and "outside city"

Avoiding double counting

NO, concentration, Prague, 4. January 2015, base case, location shown on previous slide

Fast scenario calculation using tagging

Method

- At each cell, reduce contribution to PPM/NO_x from within city by the percentage reduction of the scenario
- Re-apply simple chemistry scheme to get NO₂, O₃ from NO_x

Pros and cons

- + No new model runs required for scenarios
- + Can be done separately for each sector
- Secondary pollutants not affected in scenarios, except NO₂–O₃ interaction
 - Can only study NO₂,NO,O₃ in NO_x reduction scenario and PM10,PM2.5 in PPM reduction scenario
 - > No effect of PPM or NO_x reduction on secondary PM

Application

• Fast, self-service scenario calculator for Norwegian municipalities

Scenario results for CT9

EMEPNO (brute-force):

- EMEP without downscaling (0.1° x 0.1°)
- One rerun per scenario (-50% NOx, -50% PPM)

uEMEPTAG (tagging):

- Run only base case with uEMEP (250 x 250 m²)
- Adjust city contributions to reflect reductions (all sectors)

uEMEPIMP (brute-force): Not currently delivered

• Downscaling to 250 x 250 m² of each EMEPNO rerun

Brute-force vs. tagging Reductions in NO₂ concentration in -50 % NO_x scenario

- uEMEPIMP and uEMEPTAG differ by very little in this case
 - > Simplified chemistry scheme for NO_2 seems to work well