

Impact of dynamical agricultural temporal profiles on NH₃ modelled concentrations

M. Guevara, Tena, C., Jorba, O., Pérez García-Pando, C.

FAIRMODE Technical Meeting (on-line)

Motivation and objective

- Agricultural practices, including manure management and use of fertilizers, dominate the total amount of European NH₃ emissions (94% according to EMEP/CEIP)
- NH₃ agricultural emissions present large contributions to total PM_{2.5} levels in Europe (e.g., 23% in average according to Thunis et al., 2018)
- Temporal distribution of agricultural emissions when used for AQ modelling typically relies on the use of sector-dependent fixed profiles
- Dynamical parametrizations of NH₃ emissions, which takes into account the effect of meteorology and agricultural practices, have proved to have a significant impact on the modelling of NH₃ concentrations (e.g., Backes et al., 2016)

Objective: To construct a set of gridded temporal profiles for NH₃ emissions that represent the dynamical component of agricultural practices

Dynamic temporal parametrisations

GNFR K: Livestock emissions

Influence of temperature and wind speed on NH₃ volatilization (Gyldenkærne et al., 2005)

$$T(x,d)^{0.89} * V(x,d)^{0.26}$$

$$V(x,d) \rightarrow Ventilation$$

$$V(x,d) \rightarrow \text{Ventilation}$$
 $T(x,d) \rightarrow \text{Temperature}$

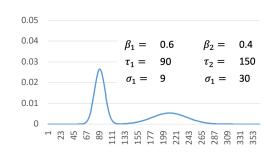
Calculation as a function of type of process:

- Animal houses with forced ventilationOpen animal houses
- Manure storages

GNFR_K: Other agricultural emissions (use of fertilizers)

Influence of temperature and wind speed on NH₃ volatilization (Gyldenkærne et al., 2005)

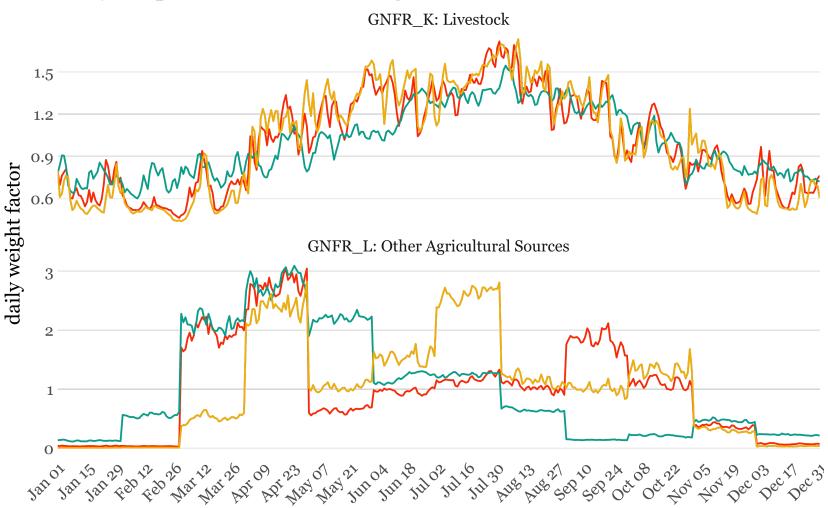
$$e^{0.0223*T_{2m}(x,d)}*e^{0.0419*W_{10m}(x,d)}$$


$$T_{2m}(x,d) \rightarrow \text{ERA5 dataset}$$

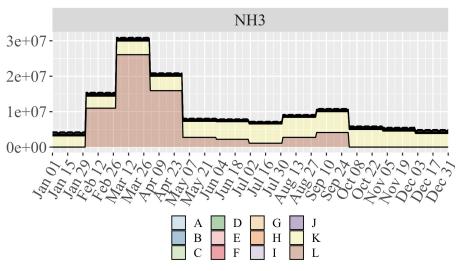
$$W_{10m}(x,d) \rightarrow \text{ERA5 dataset}$$

Influence of agricultural practices (i.e. when fertilizers are applied) (*)

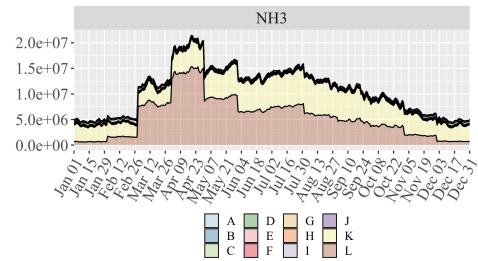
$$\sum_{a=1}^{3} \frac{\beta_{a,c}}{\sigma_{c,a} * \sqrt{2 * \pi}} * e^{\left(\frac{(t-\tau_{c,a})^{2}}{-2*\sigma_{c,a}^{2}}\right)}$$


Fraction of fertilizer applied to crop c at stage a (1:planting, 2:at growth, 3:after harvest)

(*) Mosaic of gridded factors derived from the MASAGE inventory (Paulot et al., 2014) + integration of national seasonality reported from multiple studies: Skjoth et al. (2011) (Denmark, Germany), Werner et al. (2015) (Poland) and Backes et al. (2016) (Netherlands, France, Belgium)


Resulting temporal profiles

Daily temporal factors for NH3 agricultural emissions



Impact on NH₃ daily emissions

TNO profiles (EU27 plus UK)

CAMS-TEMPO profiles (EU27 plus UK)

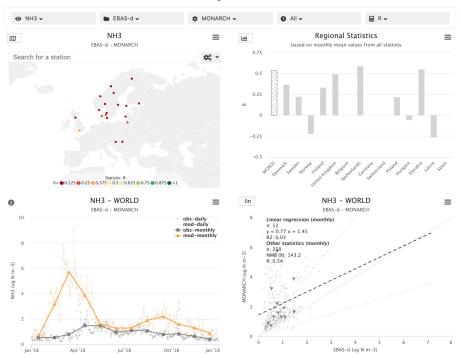
Differences (EU27 plus UK)

Impact on NH₃ daily concentrations

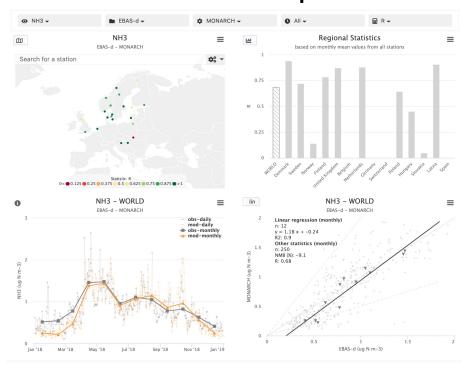
• AQ model: MONARCH (Badia et al., 2017)

• Year of study: 2018

• Emissions: CAMS-REG-APv4.2 (2017)


Observations: EBAS daily observations

Correlation coefficient (R):


All stations: 0.54 to 0.68

Netherlands: from 0.59 to 0.88

TNO profiles

CAMS-TEMPO profiles

Take home messages

- Dynamical approach used to construct a dataset of daily emission temporal profiles for livestock and fertilizer NH₃ emissions
- General improved agreement in correlation between modelled and measured concentrations of NH₃ when compared to a static approach
- Results obtained with MONARCH cannot be extrapolated to other models (e.g. different chemical and deposition mechanisms affecting the modelled results)
- Constructed profiles not applicable to all pollutants (e.g. CH4 from GNFR_L and GNFR_K are dominated by rice fields and enteric fermentation processes, respectively)
- Resulting temporal profiles reported as part of the CAMS-TEMPO dataset (Guevara et al., 2021, Earth Syst. Sci. Data.)

