

Current status on the QA/QC protocol

October 2021

Joint Research Centre

Fairmode MQO Guidance document (regularly updated)

- Definition of proper modelling quality indicators and criteria to be fulfilled in order to allow sufficient level of quality for a given model application under the AAQD
- All MQI and MPC are based on comparison between modeled and measured values, normalized by the measurement uncertainty
- Presentation and explanation of templates for harmonised reporting of modelling results

"Mandatory" MQI & MQO

European Commission

"Informative" MPI & MPC

Daily/hourly MPI & MPCC

Temporal	Bias	$MPI = \frac{ BIAS }{\beta RMS_U}$			
	Correlation	$MPI = 2\sigma_0 \sigma_M \frac{1-R}{(\beta RMS_U)^2}$			
	Std. Deviation	$MPI = \frac{\sigma_M - \sigma_O}{\beta RMS_U}$	Yearly MPI & MPC		
Spatial	Correlation	$MPI = 2\sigma_0 \sigma_M \frac{1-R}{(\beta RMS_{\overline{U}})^2}$	atial	Correlation	$MPI = 2\sigma_0 \sigma_M \frac{1-R}{(\beta RMS_{\overline{U}})^2}$
	Std. Deviation	$MPI = \frac{\sigma_M - \sigma_O}{\beta RMS_{\overline{U}}}$	Spa	Std. Deviation	$MPI = \frac{\sigma_M - \sigma_O}{\beta RMS_{\overline{U}}}$

JRC TECHNICAL REPORT

on Modelling Quality Objectives and Benchmarking

> Version 3.2 Janue, S., Thoric, F. With contributions of Adex, H., Consyste, C. Combin, C., Dathe, Gaogiese, S., Gauenite, C., Malhe, K., Melace, R., Melace, C., Malher, Kinayak, A., Genes, N., PMIIn, F.

"Informative" MPI & MPC (graphical)

Daily/hourly MPC

Yearly MPC

wany stats, presented

In conclusion

The main drawback of the MQOs is that they provide a single summary pass/fail information.

It provides limited information on the capability of the model to reproduce **hot spot areas** (spatial variability) or the timing of the **pollution peaks** (temporal variability).

European Commission

This key information for the AAQD is only partially addressed with the current MQO proposal.

Proposal for a complementary QA/QC protocol

Proposal for a QA/QC protocol to support modelled assessments of air quality

Authors: P. Thunis, L. Tarrason

Contributors:

Version 1.0 - 1/15/2020

FAIRMODE Forum for air quality modelling in Europe

COI	ntei	nts	
1.	Intro	oduction	2
2.	Scop	De	2
3.	Whi	ch models, which pollutants?	2
4.	Req	uisites and assumptions	2
5.	QA/	QC Protocol: documentation needs	3
6.	QA/	QC Protocol: Benchmarking tests	4
STEP	1.	MQ0	4
STEP	2.	Spatial variability (urban, street)	5
STEP	3.	Temporal variability (season, weekly, day/night)	6
STEP	4.	Input consistency (emission, meteorology)	7
STEP	5.	Ex-Post Assessment	7
STEP	6.	Multi pollutants checks	7
Anne	ex 1:	Fit for purpose modelling	7
Anne	ex 2:	AASAQ Audit grid (extracts)	9
Anne	ex 3:	CHIMERE protocol followed before a new version is released1	3

Complementary QA/QC protocol: purpose

The document proposes a QA/QC protocol to

 (1) ensure that sufficient information (metadata) is associated to the modelling results for their interpretation and

• (2) supplement the quality of the modelling results with different QA/QC tests to account for the variability of the air quality modelled situation.

The proposed QA/QC protocol is NOT intended to be mandatory

1st Part of session

2nd Part of session

Complementary QA/QC: main steps

- 1. <u>MQO</u> Passing the Modelling Quality objective
- 2. <u>Spatial variability</u> How accurate is the representation of spatial variability?
 - Fulfilling the spatial Model Performance Criteria (MPC) as currently developed in CEN

See CT7 & CT2 Friday sessions

- Introducing a new Incremental assessment (rural vs. urban vs. street)
- 3. <u>Temporal variability</u> Is the temporal variability well captured?
 - Fulfilling current percentile MPI for high concentrations
 - Introducing indicators for each station type to assess the seasonal, day/night and week/week-end behavior when appropriate
- 4. Input consistency concerning meteorology, BC and emissions
- 5. <u>Ex-post assessment</u>
- 6. Multi-pollutant checks

FAIRMODE QA/QC evaluation (indicators)

	Model Performance Indicator (MPI)	Model Performance Criteria (MPC)
	(to be implemented)	
Urban - rural	$MPI = \frac{INC_{urb}^{model}}{Urban - rura}$	gradients
traffic - urban	$MPI = \frac{INC_t}{Urban - Traffic}$	gradients

Spatial indicators, normalised by measurement uncertainty

		Model Performance Indicator (MPI) (to be implemented)	Model Perf. Criteria (MPC)
	Urban	$MPI = \frac{SeasDiff_{urban}^{mod} - SeasDiff_{urban}^{obs}}{\beta RMS_U}$	
Seasonal	Traffic	MPI = Sease Seasonal var	iability
	Rural	$MPI = \frac{SeasDiff_{rural} - SeasDiff_{rural}}{\beta RMS_{\overline{U}}}$	
	Urban	$MPI = \frac{WeekDiff_{urban}^{mod} - WeekDiff_{urban}^{obs}}{\beta RMS_U}$	
Week / weekend	Traffic	Week-week-end var	riability
	Rural	$MPI = \frac{WeekDiff_{rural}^{mod} - WeekDiff_{rural}^{obs}}{\beta RMS_{U}}$	
	Urban	$MPI = \frac{DayDiff_{urban}^{mod} - DayDiff_{urban}^{obs}}{\beta RMS_{TT}}$	
Day/night	Traffic	MPI = Dayl Day-night val	riability
	Rural	$MPI = \frac{DayDiff_{rural}^{mod} - DayDiff_{rural}^{obs}}{\beta RMS_U}$	

Temporal indicators, normalised by measurement uncertainty

Agenda

- 1. Feedback session
 - EMEP (Eivind)
 - IRCEL (Elke)
 - CERC (Jenny)
 - Discussion
- 2. Metadata associated to the MQO
 - Introduction (Leonor)
 - Discussion (All)

Thank-you

