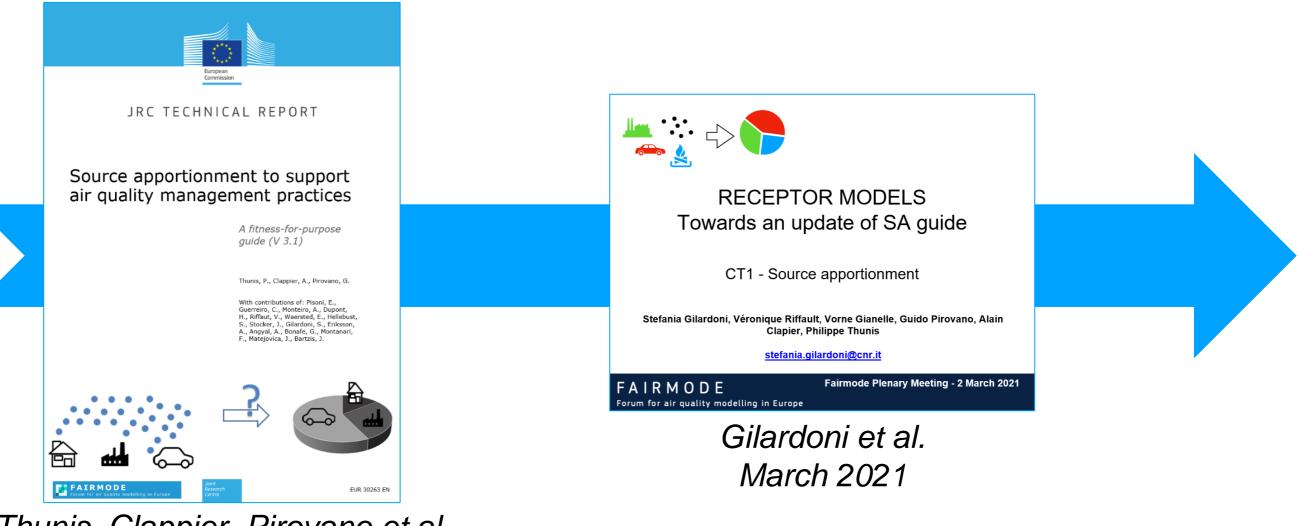


A dummy's guide to receptor modelling

CT1 - Source apportionment


Véronique Riffault, Stefania Gilardoni, Vorne Gianelle, Guido Pirovano, Alain Clapier, Philippe Thunis

veronique.riffault@imt-nord-europe.fr

FAIRMODE Forum for air quality modelling in Europe

MOTIVATION

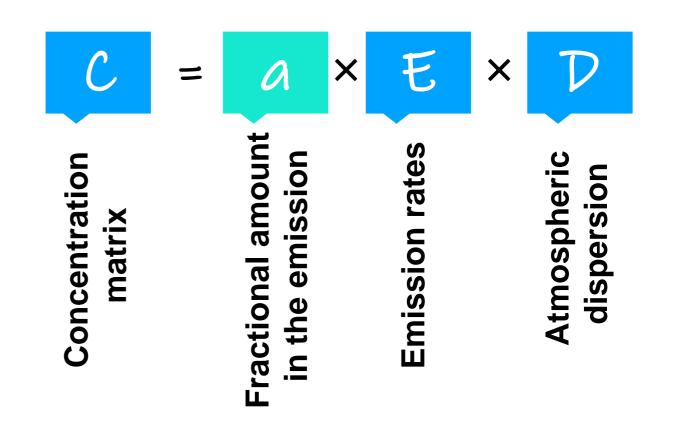
Need to update the latest JRC guide with more details on receptor models, with a framework similar to the one used for source-oriented models

Thunis, Clappier, Pirovano et al. June 2020

FAIRMODE

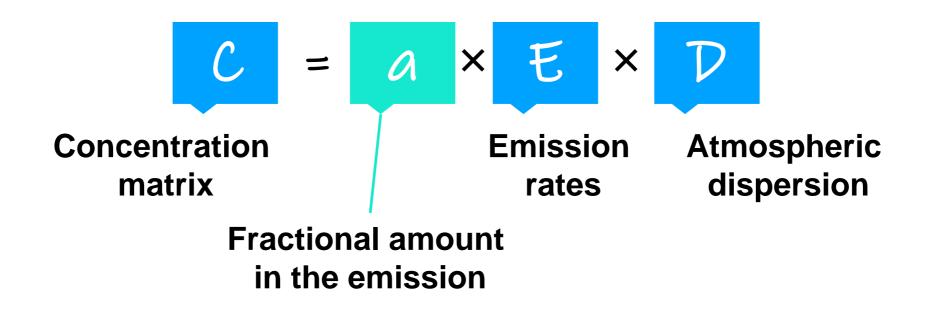
Technical Meeting – 6-8 October 2021

Forum for air quality modelling in Europe


"Receptor models use the chemical and physical characteristics of gases and particles measured at source and receptor to both identify the presence of and to quantify source contributions to receptor concentrations." (US EPA)

Based on 3 fundamental assumptions:

A source emission has a constant composition over time


The species do not react with each other but add linearly

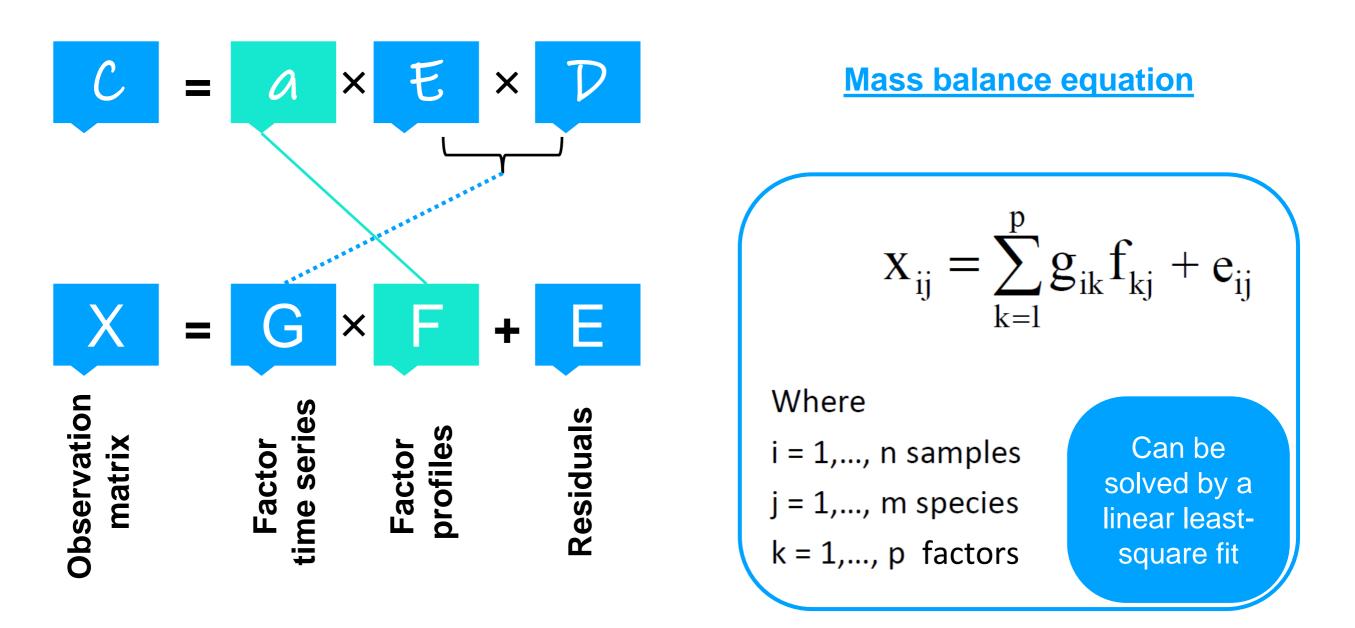
A number of p user-defined sources contribute to the receptor observations If these assumptions are met:

J. G. Watson (1984) Overview of Receptor Model Principles, Journal of the Air Pollution Control Association, 34:6, 619-623, DOI: 10.1080/00022470.1984.10465780

FAIRMODE Forum for air quality modelling in Europe

In a source model:

- C is calculated
- $a \times E$ is known
- D is known


In a receptor model:

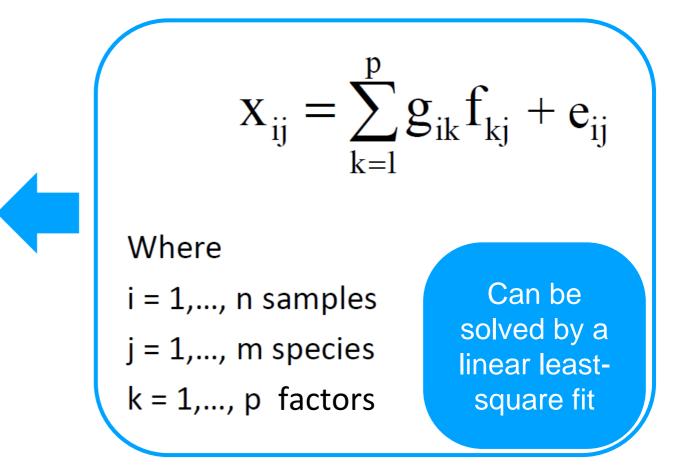
- C is known
- a is known (*)
- E × D is calculated

(*) qualitatively or quantitatively

J. G. Watson (1984) Overview of Receptor Model Principles, Journal of the Air Pollution Control Association, 34:6, 619-623, DOI: 10.1080/00022470.1984.10465780

FAIRMODE Forum for air quality modelling in Europe

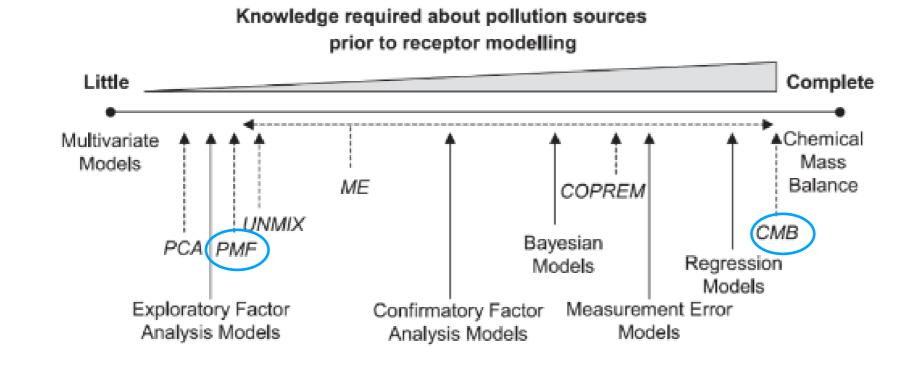
J. G. Watson (1984) Overview of Receptor Model Principles, Journal of the Air Pollution Control Association, 34:6, 619-623, DOI: 10.1080/00022470.1984.10465780


FAIRMODE Forum for air quality modelling in Europe

Mass balance equation

New assumptions arise to solve this equation:

• p, the number of sources (factors), $\leq m$, the number of species


• Source compositions are linearly independent from each other

J. G. Watson (1984) Overview of Receptor Model Principles, Journal of the Air Pollution Control Association, 34:6, 619-623, DOI: 10.1080/00022470.1984.10465780

FAIRMODE Forum for air quality modelling in Europe

RECEPTOR MODELS: TYPES of MODELS

What knowledge of the sources at the receptor site?

Viana et al. (2008) Source apportionment of particulate matter in Europe: A review of methods and results, Journal of the Aerosol Science, 39, 827-849, DOI: 10.1016/j.jaerosci.2008 .05.007

Positive Matrix Factorization (PMF)

- Number of sources (*p*) explored by the user
- Computed source profiles (fki)
- Computed source contributions (g_{ik})
- Equations solved numerically

Chemical Mass Balance (CMB)

- Known number of sources (*p*)
- Known source profiles (fki)
- Computed source contributions (g_{ik})
- Equations solved analytically

FAIRMODE Forum for air quality modelling in Europe

RECEPTOR MODELS: TYPES of MODELS

Positive Matrix Factorization (PMF) Chemical Mass Balance (CMB) Number of sources (*p*) explored by the user - Known number of sources (*p*) **Computed** source profiles (**f**_{ki}) Known source profiles (f_{ki}) **Computed** source contributions (g_{ik}) - **Computed** source contributions (g_{ik}) Equations solved numerically Equations solved analytically Technical requirements $N_t \ge \frac{N_{sp} \times N_{sr}}{N_{sp} - N_{sr}}$ Number $N_t = 1$ sample of samples? is enough to solve the equation Variables are weighted in the Minimization of: Use of least-square solution so that less $Q = \sum \sum \left(\frac{C^{sp}(t) - \sum_{sr} C^{sp}_{sr}(t) f^{sp}_{sr}}{U^{sp}(t)} \right)^2$ uncertainties? precise measurements have less influence than more precise ones

FAIRMODE Forum for air quality modelling in Europe

RECEPTOR MODELS: TYPES of MODELS

Positive Matrix Factorization (PMF) Chemical Mass Balance (CMB) Number of sources (*p*) explored by the user Known number of sources (*p*) **Computed** source profiles (**f**_{ki}) Known source profiles (fki) **Computed** source contributions (g_{ik}) **Computed** source contributions (g_{ik}) Equations solved numerically Equations solved analytically Results **Unicity of** ~Yes No the solution? Can appear as 1 or 2 factors Should stay negligible **Background?**

How to choose Results need to make sense environmentally. the best solution No structure left in the residuals.

FAIRMODE Forum for air quality modelling in Europe

with PMF?

SUMMARY of POSSIBLE CASES? (ongoing discussion ...)

Type of pollutant	Spatial variability (from source to receptor)	Temporal variability (at the receptor site)	Example of identified factors	Example of identified sources
Primary	Profile constant	Profile constant	Hydrocarbon-like organic aerosol (HOA)	Primary traffic exhaust emissions
Factor = source = emission profile				
			Fresh marine aerosols	Sea spray emissions
Primary	Profile not	Profile constant	Aged marine aerosol	Sea spray emissions
	constant			+ other(s)
Secondary	Profile not	Profile can be assumed	Secondary organic aerosol	
	constant	constant over time (diffuse sources)	(SOA)	Sources are
		(amade coareco)	Secondary inorganic aerosol	precursor gases
			(SIA)	
Secondary	Profile not	Profile changes	IEPOX-SOA	Biogenic SOA
	constant	over time		

Technical Meeting – 6-8 October 2021

Forum for air quality modelling in Europe

FAIRMODE

Thank you for your attention

Any questions/comments?

FAIRMODE Forum for air quality modelling in Europe