Source apportionment

Tagging and Brut Force:

Similar, complementary or designed for different purposes ?

FAIRMODE Forum for air quality modelling in Europe

Brute Force (PI) and Tagging (TC)

Two source apportionment methods based on Air Quality Models

Data Analysis

Data used by Thunis et al. (2019) and by Belis et al. (2021).

1 year (2010) CAMx simulations over the Po Valley

- □ Base case (including PSAT)
- Reduction scenarios:
 - at 20%, 50% and 100%,
 - affecting the sectors of transport, industry and agriculture.

Averages and aggregations end up making **NOT ALL** results similar

The two methods give similar results for non reactive species (linearity for 0 to 100% reduction):

Belis et al. (2021) conclude:

"in most situations the two approaches (i.e. TC and PI) provide similar results for annual averages"

but an analysis of the situation as a whole leads to a slightly different conclusion:

"PI and TC results differ in most of cases" (Thunis et al.; 2019)

Other options for TC

Belis et al. (2019): « An option emphasize the role of agriculture with this approach (i.e. TC) would be to develop a version based on the molar ratio instead of the mass »

The choice for the source repartition could change arbitrary

European Commission

Université

de Strasbourg

Other options for PI

Belis et al. (2021): "in the majority of the tested scenarios at 50% and 20% ERLs (i.e. Emission Reduction Levels), interaction terms are either negligible or remain low. In these conditions, the TC and PI approaches provide comparable results".

Other options for PI

Source allocation (& DDM)

= PI for « low » emission reduction levels

Conclusions?

- PI and TC results differ in most of cases. Results are similar only in case of linearity from 0 to 100% emission reductions
- TC are based on source repartitions that could change arbitrary. How to choose between the different options and for what purpose?
- Source allocation (DDM) is the best alternative to compute source apportionment components related to reduction impacts.

Next steps?

Further investigation to clarify the limitations and purposes of the different source apportionment methods

Volunteers to participate in a new publication?

clappier@unistra.fr

Thank you for your attention

