

FAIRMODE Technical Meeting WG4 - Planning

Testing the Atmospheric Evaluation and Research system for Spain (AERIS) with the Delta & FAIRMODE planning tools

M. Vedrenne*, J. Lumbreras & R. Borge

Laboratory of Environmental Modeling, Technical University of Madrid (UPM)

June 25th, 2015 Aveiro, Portugal

*permanent position at Ricardo-AEA (London)

<u>m.vedrenne@upm.es</u>

Slide 2 of 13

• **AERIS** is an air pollution Integrated Assessment Model conceived for Spain and the Iberian Peninsula.

• Addresses air quality variations (policy-relevant indicators) as a function of percentual variations in emissions against a reference scenario.

• Multi – pollutant approach: SO_2 , NO_2 , NH_3 , PM_{10} , $PM_{2.5}$. Describes formation of O_3 and secondary particles.

 Based in the SIMCA – SERCA modeling system: WRF – SMOKE – CMAQ.

• Constructed with emissions from the 2007 National Emission Inventories of Spain and Portugal. Reference scenario. Activity peak.

The AERIS model

Slide 3 of 13

• Domain size: 960 × 1200 km.

- Cell size: 16 km. 4500 cells.
- Domain center: 40°N, 3°W
- Spain and Portugal. Parts of France, Morocco and Algeria.

Provides results for:

- NO₂ highest 19th hourly concentration
- NO₂ annual mean
- PM₁₀ highest 36th daily concentration
- PM₁₀ annual mean

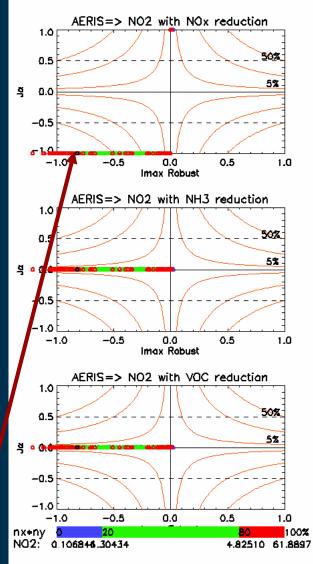
Evaluation of Scenarios

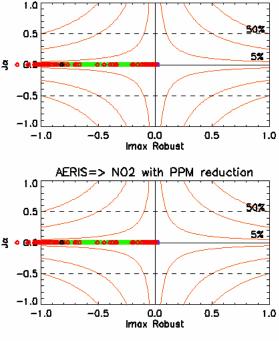
Slide 4 of 14

In order to run the tool, the following scenarios were produced with respect to a baseline scenario (AERIS 2007 CLE):

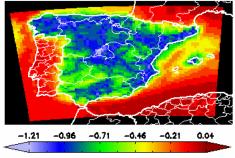
- Scenario 01: -20% reduction of NO_x
- Scenario 02: -20% reduction of SO_x (SO₂)
- Scenario 03: -20% reduction of NH₃
- Scenario 04: -20% reduction of PPM
- Scenario 05: -20% reduction of VOC
- Scenario 06: -20% reduction of all precursors
- Scenario 07: -50% reduction of NO_x
- Scenario 08: -50% reduction of SO_x (SO₂)
- Scenario 09: -50% reduction of NH₃
- Scenario 10: -50% reduction of PPM
- Scenario 11: -50% reduction of VOC
- Scenario 12: -50% reduction of all precursors

Planning Tool Results


AERIS=> NO2 with SOx reduction


Slide 5 of 13

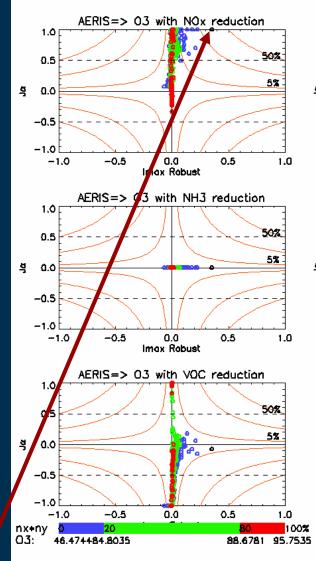
Results for NO₂

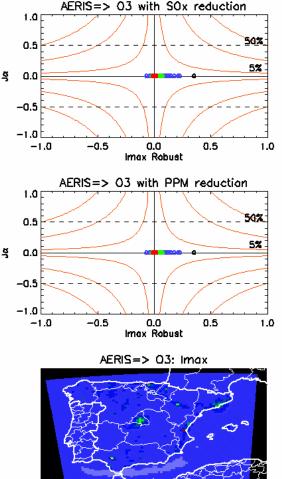

- The NO₂ concentration in AERIS depends only on NO_x changes $(J_{\alpha}^{k}=0)$.
- National domain points dominated by local effects and other by regional effects (see Madrid).
- I_{max} values < -0.46 for most cells within Spain.
- I_{max} values > -0.21 for most cells in Portugal, France and North Africa.

Madrid

AERIS=> NO2: Imax

Planning Tool Results




Slide 6 of 13

Results for O₃

- The O₃ concentration in AERIS depends on marginal changes in NO_x and VOC (J_α^k≠0).
- National domain O₃ chemistry in AERIS is determined by BC from CMAQ (regional background). High dominated regimes.
- I_{max} values > -0.11 for all cells within the domain.

I_{max} values > 0.32 for Madrid, Valencia, etc. (titration effect).

-0.11

0.10

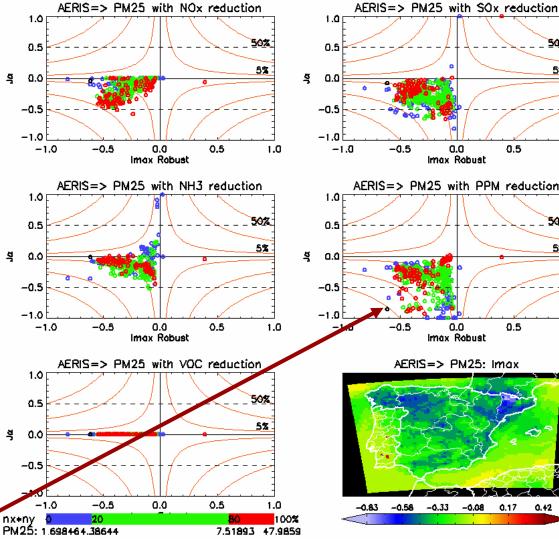
0.32

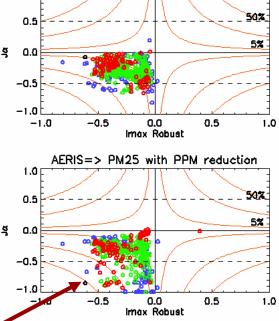
0.5+

0.97

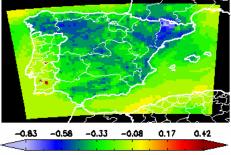
0.75

Planning Tool Results




Slide 7 of 13

Results for PM_{2.5}


- The PM_{2.5} concentration in AERIS depends on changes in **PPM** as well as NO_x , SO_x and NH_3 , (J_α^k<0).
- Regions <u>such</u> as Catalonia, Castilla-Leon and Madrid exhibit local effects (related to agriculture and traffic).
- I_{max} values < -0.08 for almost all cells within the domain.

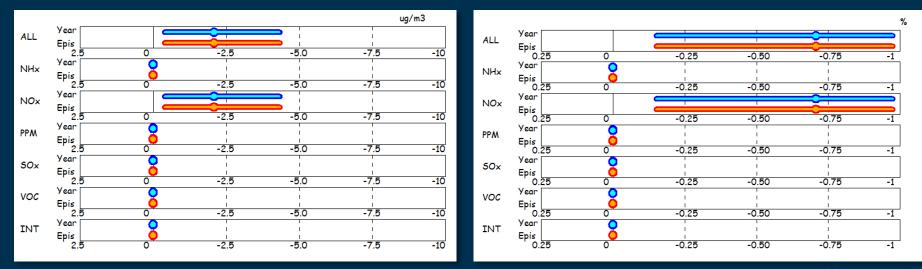
I_{max} values -0.5 for urban centres. Madrid

AERIS=> PM25: Imax

Monitoring Stations

Slide 8 of 13

Air Quality Monitoring Stations in Spain (EMEP Network).



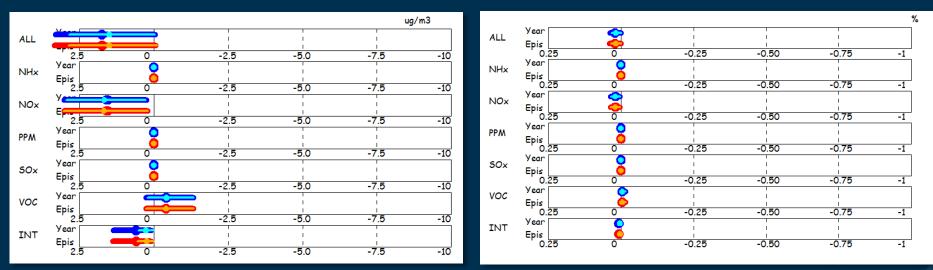
- All background locations.
- Representative of the domain scale.
- Stations in Portugal were not considered.
- Measurements from 2007 for the 3 studied pollutants.

m.vedrenne@upm.es

Delta Tool Results

Results for NO₂

- In AERIS, the main contribution in the formation of NO₂ is due to changes in NO_x emissions.
- The formation of NO₂ is very linear as the potentials computed for 2 different reduction levels are similar. No interactions.
- Episode and annual values are identical because AERIS does not provide hourly concentrations of NO₂, but rather annual averages.



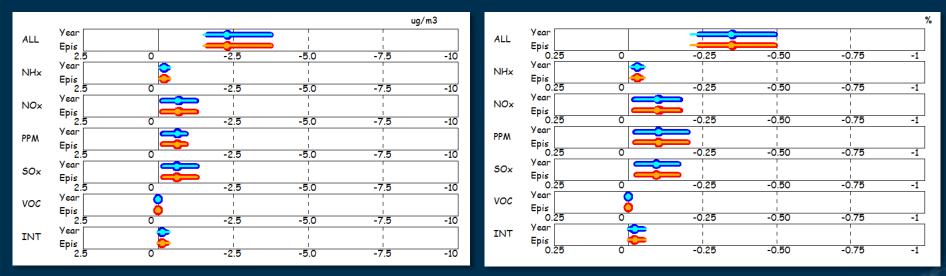
Slide 9 of 13

m.vedrenne@upm.es

Delta Tool Results

Results for O₃

- In AERIS, O₃ formation is caused by NO_x and VOCs exclusively.
- The positive potential in NO_x means that its contribution is negative VOC limited regime. Reductions in VOC emissions reduce O₃ concentrations.
- Small relative potentials indicate that the contribution of NO_/VOC emission reductions to O₃ concentrations is small. WRF-CMAQ estimates high concentrations of O₃ due to regional boundary conditions.



Slide 10 of 13

m.vedrenne@upm.es

Delta Tool Results

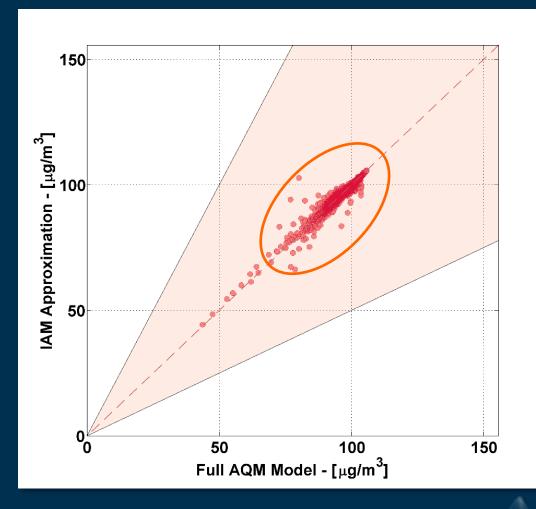
Results for PM_{2,5}

- The main contributors to PM_{2.5} formation in AERIS are PPM, NO_x and SO_x.
- Marginal contribution of NH₃ to the formation of PM_{2.5}.
- The formation of PM_{2.5} is very linear potentials for 2 different reduction levels are very similar and the interaction terms are very low.

Final Remarks

Slide 12 of 13

- The Planning and Delta tool were useful resources for analysing the interactions between pollutants that the AERIS Integrated System considers.
- The effect of emission changes in the concentration of pollutants in AERIS is mainly linear. This is consistent with the initial formulation of the integrated assessment model as a (linear) simplification of the WRF-CMAQ model ensemble of the SERCA project.
- Main limitation of the analysis: the possibility of retrieving an individual value for each of the cells in the modelling grid at a time (annual average). No hourly profiles available.
- In the near future, a comparison between the performance of AERIS and its parent air quality model (WRF-CMAQ) will be carried out with the Delta tools to assess similarities in its diagnostic accuracy and performance.
- Using and configuring the Planning and Delta tool was not straightforward and required substantial guidance from developers, especially during the preparation of input files.


Thank you for your attention!

Delta Tool Results

Slide 14 of 13

AERIS estimates against WRF-CMAQ for O₃

