

Emission data for forecasting applications CCA-WG2: Forecasting

Frédérik Meleux

Institut National de l'Environnement Industriel et des Risques

INTRODUCTION

- Air quality platforms produce daily forecasts for the D+0, D+1 and D+2 (and D+3).
 - provide every day information related to the air quality levels
 - targetted pollutants: O3,NO2,PM10,PM2.5
 - In case of pollution episode:
 - Support to policy users
 - Provide recommendations to the public
 - to identify the likely causes
 - to assess population exposure
 - to set-up efficient measures (short term action plans)

Input data for air quality forecasting

- Emissions:
 - Anthropogenic emissions inventories:
 - European El TNO (7x7 km2)
 - Natural emissions calculated online by the chemical transport model (Biogenic emissions, dust emissions ...)
 - Support from the satellite observations to get near real time emissions (biomass burning)

Satellite and Biomass burning

 Forest fires lead to substantial emission of chemical species and particulate matter.

maîtriser le risque pour un développement durable

Satellite and Biomass burning

- How to deal with the persistence of the biomass burning within the model for the purpose of the forecasts ?
 - f(soil properties, meteorological conditions)
 - Investigation of several databases to determine parametrization of BB persistence in regional European forecasting
 - A large database available from Apiflam project.

Satellite and NH3 emissions

- Investigate the use of IASI to improve the representation of ammonia emissions
- Assumptions that the differences between CHIMERE and IASI are only due to the emissions prescribed in the model
- Use of IASI monthly / daily values to modulate the NH3 emission
 - IASI: spatial and temporal proxy
 - to improve the spatial distribution and provide more dynamic emissions than the standard temporal profile

Satellite and SO2 Volcano emissions (Bardarbugua)

- OMI measurements : Assimilation manage to represent the SO2 plume in the model and its dispersion towards Europe at global scale
 - provide BC to regional forecast
- Monitoring services produces in NRT assessment of the emissions (not yet useful for forecasting)

maîtriser le risque our un développement durable

General improvements of emissions

- Will have benefits for emission inventory used in forecasting chains:
 - PM emissions could be revised including EF considering SVOC/IVOC
 - Can lead to substantial increase of PM emissions in Europe
 - WG TFMM/TFEI (B.Bessagnet)

General improvements of emissions

- Update of wood burning emission inventories (Denier van der Gon et al., 2015)
 - Revised emissions by a factor 2-3 of residential wood burning

Should reduce the wintertime PM underestimation during cold surge

Figure 3. Total organic carbon emissions (tCyr⁻¹) for selected countries according to the EUCAARI and the TNO-newRWC emission inventories.

General improvements of emissions

- Use proxies from national bottom-up emission inventory to improve emission spatial distributions
 - France, Great-Britain

Conclusions

- Satellite brings a useful information to improve spatial and temporal distribution for several emissions
- Effort to evaluate the impact of SVOC/IVOC on the possible underestimation in PM emissions in Europe
- Recent work shows this impact on SNAP2 for residential heating coming from wood combustion.
- Improvement of the spatial distribution of emissions based upon national proxies from bottom-up emission inventory

