

FAIRMODE Technical Meeting, Aveiro, Portugal, 24-25 June 2015

Improvements of SIMAIR with support vector regression, SVR

Stefan Andersson and Heléne Alpfjord

Swedish Meteorological and Hydrological Institute

SIMAIR – Swedish national Air Quality model system

Web-based Air Quality model tool

- Can be used by all municipalities and cities in Sweden.
- Simple user interface.
- Fast calculations.
- Applications for road traffic and small-scale residential wood combustion.

http://www.smhi.se/tema/SIMAIR

SIMAIR - coupled model system

Regional scale

- MATCH: Multi-scale Atmospheric Transport and Chemistry Model
- 44 km x 44 km (Europe)

Urban scale

- BUM backtrajectory model + Gaussian model
- 1 km x 1 km

Local scale

- OSPM (street canyon)
- Open road
- Dispersion
- 25 m x 25 m

Statistical evaluation of SIMAIR

- Paper submitted 2015 to ACP.
- Validation including Delta-tool.
- Evaluation of statistical post-processing technique; support vector regression, SVR.

Data fusion using Support Vector Regression (SVR)

- Aim: To implement a method for statistical post-processing of dispersion model output from SIMAIR.
- The compound examined is PM10.
- The statistical method is developed based on data from Hornsgatan in Stockholm 2007-2009. Validation using data from Umeå and Gothenburg.
- Two years used as evaluation set, one year as validation set

Hornsgatan in Stockholm

- Yearly daily average of 28 000 vehicles
- One of the streets in Sweden with the highest concentrations of PM10

Gårda in Gothenburg

Yearly daily average of 90 000 vehicles

Västra Esplanaden in Umeå

- Yearly daily average of 24 000 vehicles
- Problems with inversions

Support Vector Regression

- Data fusion methods are completely statistical, do not take physical or chemical laws into account.
- Support Vector Regression can be used for both linear and non-linear regression.
- Does not assume normally distributed residuals nor constant variance.

Support Vector Regression

- SVR is a form of supervised machine learning.
 - Training using examples
 - Prediction input data are given values based on training
- Input data is transformed to a higher dimensional space where a linear regression is performed
- The transformation uses kernels (here radial basis functions)

Support Vector Regression

- Minimisation is based on both complexity and residual size. Overfitting is avoided.
- The optimisation problem:

Minimize:

$$\frac{1}{2} \|w\|^2 + C \sum_{i=1}^{N} (\xi_i + \xi_i^*)$$

· Constraints:

$$y_i - wx_i - b \le \varepsilon + \xi_i$$

$$wx_i + b - y_i \le \varepsilon + \xi_i^*$$

$$\xi_i, \xi_i^* \ge 0$$

Source: http://www.saedsayad.com/support_vector_machine_reg.htm

Explanatory variables

- Modelled concentration of PM10 (local and urban background), number of vehicles
- Meteorological: precipitation (exponentially filtered), humidity, wind direction, temperature difference during the day, accumulated global irradiance
- Indicators of day/night and season

Results from Gårda in 2009

	Observations	SIMAIR model	SVR
Yearly mean	23.7	37.0	24.8
(μg/m³)			
90-percentile daily	39.3	70.3	39.3
mean (µg/m³)			
Days > 50 μg/m ³	15	68	15
RPE %		56	5.6
RDE %		33	3.0
r daily mean		0.60	0.76
r hourly		0.43	0.57
RMSE daily mean		15.0	6.49
(μg/m³)			
RSME hourly		29.5	18.3
(µg/m³)		100	

13

Results from Gårda in 2009

Conclusions

- The SVR method shows promising results for correcting SIMAIR calculations
- It is important that training data are representative for the period to be predicted
- Independent observation data for validation
- Useful tool for model evaluation
- Future extensions use the method for sites without measurements by training on adjacent locations?