FAIRMODE – Cross-cutting activities: Forecasting evaluations

F. Meleux and VITO,BSC,CERC,JRC

INTRODUCTION

- Air quality platforms produce daily forecasts for the D+0, D+1 and D+...).
 - provide every day information related to the air quality levels
 - targetted pollutants: O3,NO2,PM10,PM2.5

OBJECTIVES

- What are the policy objectives for using AQ forecasts:
 - Predict & anticipate the development of a pollution episode
 - Inform and provide recommendations to the public
 - to identify the likely causes responsible for this episode to set-up efficient measures (short term action plans)
- What are the policy user needs to use AQ forecasts:
 - Get an assessment/knowledge about the capabilities of the forecasting system
 - How able are forecasts to detect / anticipate threshold exceedances ?
 - The triggering of measures is based on threshold values
 - How stable are the forecast scores from D+0 to D+n (usually n = 2 or 3)?
 - Policy measures are more efficient when they are taken earliest so the goal is really to provide confident forecasts at least at D+1 (D+2 would be even better)
- ➤ Use the deltatool to provide evaluation of the capabilities of the Air quality forecasting system

FAIRMODE FORECAST TARGET

• To address these objectives, a specific diagram was developed in the delta-tool to focus on evaluation of forecasting system capabilities:

Target forecast_ji =
$$\frac{\sqrt{\frac{1}{N} \sum_{i=1}^{N} (M_{ji} - O_i)^2}}{\sqrt{\frac{1}{N} \sum_{i=1}^{N} (O_{i-1} - O_i)^2}} with_{j} = i - n,..., i$$

- Stating that the worst acceptable model is the persistent model, so at a given station the forecast (D+0) provides the observation of the eve (D-1).
- Assess the ability of the forecast to have a better daily variations than the persistent model even though the forecast is produced j days before

- Keep part of indicators in the assessment diagram:
 - RMSE, BIAS, CRMSE

- And to add new indicators more dedicated to the threshold exceedances:
 - FA (False alarm), MA (Missed alarm), GA+ and GA- (Good forecasts respectivily with and without threshold exceedances)
 - Ratio FA/MA If $\frac{FA}{MA} \le 1 \Rightarrow$ Left If $\frac{FA}{MA} > 1 \Rightarrow$ Right
 - New suggestion to use the probability of good detection of threshold (FCF=GA+/(GA++MA)) and the rate of false alarm (FFA=FA/(GA++FA)). 2 formulations are proposed:
 - FCF-FFA (if > 0 means FA > MA and if <0 MA > FA).
 - FCF+FFA -1 (if > 0 means FA > MA and if <0 MA > FA).

- And to add new indicators more dedicated to the threshold exceedances:
 - FA (False alarm), MA (Missed alarm), GA+ and GA- (Good forecasts respectivily with and without threshold exceedances)
 - GA₊ / (FA + MA) -> GA₊ / (GA₊+MA) : probability of good forecast when exceedance occurs

$$\frac{GA +}{FA + MA} < 0.2 \Rightarrow \text{Red}$$

$$0.2 \leq \frac{GA +}{FA + MA} < 0.4 \Rightarrow \text{Orange}$$

$$0.4 \leq \frac{GA +}{FA + MA} < 0.6 \Rightarrow \text{Yellow}$$

$$0.6 \leq \frac{GA +}{FA + MA} < 0.8 \Rightarrow \text{Light green}$$

$$0.8 \leq \frac{GA +}{FA + MA} \Rightarrow \text{Dark green}$$

 Introduction of an observation uncertainty (OU) attributed to the modeling outputs to take into account a margin of tolerance in the threshold exceedances:

if
$$M_t < O_t$$
 then $M_t^* = \min(M_t * (1 + OU), O_t)$
if $M_t \ge O_t$ then $M_t^* = \max(M_t * (1 - OU), O_t)$

- Model value becomes closer to the observations
- OU= 5% for O3 , OU=10% for PM10
- New suggestion(s) in the next presentations

Delta-tool developments for forecasting

- Data selection to compute scores when threshold exceedances occur
 - V4: all stations included
 - V5: Only the stations with at least one exceedances of the threshold either in the observation or in the forecast datasets
 - Suggestions for next version: all the station included but with white dots for stations without any exceedances

Delta-tool developments for forecasting

- Data selection to compute scores when threshold exceedances occur
 - V4: all stations included
 - V5: Only the stations with at least one exceedances of the threshold either in the observation or in the forecast datasets
 - Suggestions for next version: all the station included but with white dots for stations without any exceedances

Delta-tool developments for forecasting

- Extent the summary statistics report :
 - to include statistics about threshold exceedance detections corresponding to the dot colors
 - to have a representation of the scores for multiple time-lags
 - Details about the consistency of the AQ forecast established for D+0, D+1, D+...

Performance Criteria satisfied
Performance Criteria satisfied; Error dominated by corresponding Indicator
ITME: 90% of stations fulfills the Performance Criteria
SPACE: Dot fulfills the Performance Criteria
SPACE: Dot does not fulfill the Performance Criteria
SPACE: Dot does not fulfill the Performance Criteria

Evaluation of the PREV'AIR 2013 forecasts

- Modelling platform have two kinds of products:
 - Raw forecasts (directly produced by the model CHI)
 - Forecasts with corrective post-processing
 (ASCHI:statistical correction of CHI based on the past errors of the models)
- For O₃: performances are in good agreement

Evaluation of the PREV'AIR 2013 forecasts

- Modelling platform have two kinds of products:
 - Raw forecasts (directly produced by the model CHI)
 - Forecasts with corrective post-processing (ASCHI:statistical correction of CHI based on the past errors of the models)
- For PM₁₀: performances are quite different:
 - Good for ASCHI
 - Poor for CHI

Conclusions

- First version of the target forecast diagram looks promising but some improvements still need to be done:
 - define our final choice about the indicators to represent in the deltatool
 - implement statistics about the threshold detection capabilities in the summary statistics report.
- Assessment of the consistency/accuracy of the whole forecasting system (global assessment for D+0,D+1, D+... and all thresholds)
- Continue to test
 - Additional tests are foreseen with the large European database from MACC projects (not yet done due to issues in the MACC NRT observation dataset for 2015)