

Joint Research Centre

Source apportionment inter-comparison exercise 2015-2016 part 3 RM and CTM

C.A. Belis , D. Pernigotti EC-JRC

RSE G. Pirovano RSE SpA

Fairmode Technical meeting Athens, 19-21 June 2017

European Commission

Contributors

O. Favez, J.L. Jaffrezo, J. Kuenen, H. Denier van Der Gon, M. Rezler, M.T. Pay, M. Almeida, F. Amato, A. Aniko, I. Beslic, M. Bove, G. Calori, D. Cesari, C. Colombi, D. Contini, G. De Gennaro, A. Di Gilio, I. El Haddad, H. Elbern, K. Eleftheriadis, G. Foret, M. Garcia Vivanco, S. Gilardoni, M. Grosa, S. Hellebust, R. Hoogerbrugge, P. Hopke, Y. Izadmanesh, H. Jorquera, A. Karppinen, Z. Kertesz, T. Kolesa, P. Lazzeri, F. Lenartz, F. Lucarelli, A. Manders, H. Martins, M. Mircea, D. Mooibroek, S. Nava, D. Oliveira, P. Paatero, M. Paglione, M. Perrone, E. Petralia, A. Pietrodangelo, S. Pilion, P. Pokorna, P. Prati, M. Reizer, V. Riffault, C. Samara, L. Samek, S. Sauvage, F. Scotto, K. Sega, G. Siour, R. Tauler, R. Vecchi, E. Venturini, M. Vestenius, E. Yubero

Intercomparison outline – Source oriented models (CTM)

- Common input dataset
 ECMWF meteorology
 TNO emissions
 MACC chemical fields
- Centralized MPE (by RSE) LENS dataset
 ca. 200 AIRBASE sites
 Local networks
- Set of receptors (10)
 Lens
 Urban sites
 Coastal sites
 Background sites

8 - 14 source categories
3 + 3 summer/winter months
Hourly concentrations
Primary and secondary PM
PM precursors

Evaluation in this IE

Commission

Intercomparison differences in RM and CTM set up

RM 09/03/2011 to 06/03/2012 every 3 days 24 hours mean 116 samples PM₁₀ 98 chemical species CTM Summer: 1/6/2011 to 1/08/2011Winter: 15/11/2011 to 5/2/2012Hourly data c.a 4300 time steps PM_{10} and $PM_{2.5}$ 7 chemical species

	RMs	CTMs	
IONS	8 species	nitrate (NO3), sulphate (SO4), ammonium (NH4),	
carbonaceous fraction	EC/OC 2 species	elemental carbon (EC), organic carbon x <i>k</i> = (POA+SOA)	
TRACE ELEMENTS	25 species	other primary aerosol (OPA)	
PAHs	15 species		
LEVO/MANN	3 species		
HOPANES	10 species	POA+SOA	
N-ALKANES	29 species		
CHOLESTEROL			
POA MARKERS	4 species	primary organic aerosol (POA),	
OTHER	Pristane, Phytane, Glucose		
		secondary organic aerosol (SOA),	
TOTAL	98	7	

Definition of sources in CTMs

SNAP		Mandatory 8	Optional 14
1	Energy industry	01_ENI	01_ENI
21	R & C combustion, coal	99_OTH	02_ОТН
22	R & C combustion, light liquid fuel	99_OTH	02_OTH
23	R & C combustion, medium liquid fuel	99_OTH	02_OTH
24	R & C combustion, heavy liquid fuel	99_OTH	02_OTH
25	R & C combustion, gas	99_OTH	02_OTH
26	R & C combustion, solid biomass (wood)	02_BIO	02_BIO
34	Industry (combustion & processes)	34_IND	34_IND
5	Fugitive emissions from fuels	99_OTH	99_OTH
6	Product use including solvents	99_OTH	99_OTH
71	Road transport, exhaust, gasoline	07_RTR	71_RTG
72	Road transport, exhaust, diesel	07_RTR	72_RTD
73	Road transport, exhaust, LPG/natural gas	07_RTR	07_RTR
74	Road transport, non-exhaust, evaporation	07_RTR	07_RTR
75	Road transport, non-exhaust, wear	07_RTR	75_RTW
8	Non-road transport	99_OTH	99_OTH
81	International shipping, marine diesel oil	08_SHP	08_SHP
82	International shipping, heavy fuel oil	08_SHP	08_SHP
9	Waste treatment	99_OTH	99_OTH
10	Agriculture	10_AGR	10_AGR
11P	Dust	11_DST	11_DST
11	Sea Salt	99_OTH	11_SLT
11	Biogenic SOA	99_OTH	11_BSO

8 - 14 source categories defined for comparability with RM source categories (SPECIEUROPE used as reference) The optional set with higher detail on domestic, traffic and primary inorganic aerosol (dust/salt)

3 + 3 summer/winter months Hourly concentrations (current evaluation for daily averages) Primary and secondary PM PM precursors

Comparability of sources between RMs and CTMs

СТМ	RM corresp.	СТМ	RM corresp.	
Mandatory		Optional		
01_ENI	30 fuel oil	01_ENI	30 fuel oil	
99_OTH				
99_OTH				
99_OTH		02_OTH		
99_OTH				
99_OTH				
02_BIO	40 biomass burn.	02_BIO	40 biomass burn.	
34_IND	20 industry	34_IND	20 industry	
99_OTH		99_OTH		
99_OTH		99_OTH		
07_RTR	1 traffic	71_RTG	2 ovbouct	
		72_RTD	2 exhaust	
		07_RTR (OTH)		
		07_RTR (OTH)		
		75_RTW	5 road dust	
99_OTH		99_OTH		
08_SHP	37 ship, 30 fuel oil	08_SHP	37 ship	
99_OTH		99_OTH		
10_AGR		10_AGR		
11_DST	10 dust	11_DST	10 dust	
99_OTH		11_SLT	12 marine, 71 aged sea salt	
99_OTH		11_BSO		
NH ₄ +NO ₃ +SO ₄	60 SIA	NH ₄ +NO ₃ +SO ₄	60 SIA	

	SOURCE CATEGS, (SPECIEUROPE)
	traffic
	exhaust
0	soil
2	marine (fresh sea salt)
0	industry
0	fuel oil
1	coal
7	ship
0	biomass burning
1	wood burning
	road dust
0	SIA
1	ammonium nitrate
2	ammonium sulphate
6	deicing salt
0	РОА
1	aged sea salt
4	combustion
	Commission

Averaged reported contributions

Mass apportionment

Lens

CTM performance tests using the RMs as reference

Performance RM CTMs z-score (overall sce)

Lens

mandatory

optional

successful candidates: 83%

successful candidates: 83%

Mandatory: soil is the most critical source, only the candidate of cB is comparable with RMs, followed by power plants and ship. The scores of result cF are on average lower than the others while cB shows a contribution from power plants lower than RMs. Optional: the most critical source is soil with two candidates (cAo and cDo) outside the acceptability area. cAo contribution is lower than RMs in road dust and the same applies to cB for power plants.

Performance RM CTMs RMSEu (time series)

Lens

mandatory

comparable candidates: 34%

comparable candidates: 25%

optional

Mandatory: only the candidates of the sources industry and traffic pass the RMSEu test and the same applies to sources industry and exhaust in the optional set.

All the candidates of the other sources fall outside the acceptability area (prevailing negative bias) in both the mandatory and the optional sets

Evaluation of CTMs using RMs as reference (Lens)

RMSE_u (time series)

The comparability between RMs and CTMs varies from source to source

Performance CTMs ALL RECEPTORS ALL MODELS

z-score (overall average)

RMSE_u (time series)

In general the geographic patterns are quite homogeneous among sites.

In z-score mandatory Paris and London slightly lower perfromance than other sites (bias problem). However these sites are among those with better perfomance in the target plots (-> good estimation of the time trends near sources).

Performance CTMs ALL RECEPTORS ALL MODELS

Reference CTM = tagged species

z-score (overall average)

In general the geographic patterns are quite homogeneous among sites.

In z-score mandatory Paris and London slightly lower perfromance than other sites (bias problem). However these sites are among those with better perfomance in the target plots (-> good estimation of the time trends near sources).

Conclusions of the IE (1)

GENERAL

In general models show better performances in estimating the average source contribution for long time windows (in this case many months covering summer and winter) than the contributions for single time steps (time series). This is likely due to the influence of non linear processes. The comparability between RMs and CTMs changes from source to source.

RMS

- RMs present comparable results among each other which are also coherent with measured PM.
- There is a convergence towards one particular model: EPA PMF5.
- **Industry** source category in RM needs better definition because often used to represent a wide variety of different sources.
- The experience of the practitioner influences the performance

Conclusions of the IE (2)

CTMs

- CTMs show good performances when tested using an ensemble reference, especially for the overall average.
- No significant differences in performance between sites suggest that CTM have a rather comparable geographical pattern likely due to same input data.
- The sensitivity analysis for CTM demonstrates the influence of the spatial resolution on the SA performance of models in densely populated areas.
- More effort is needed to improve and harmonise the estimation of soil and road dust sources, in particular in the emission inventories.
- When using tagged species as reference, differences between tagged species and brute force are mainly observed in sources involved in secondary processes (agriculture, power plants, traffic, biomass burning, etc.)

Thank you for your attention

