

Joint Research Centre

Source apportionment inter-comparison exercise 2015-2016 part 2 CTM

C.A. Belis , D. Pernigotti EC-JRC

RSE G. Pirovano RSE SpA

Fairmode Technical meeting Athens, 19-21 June 2017

European Commission

Contributors

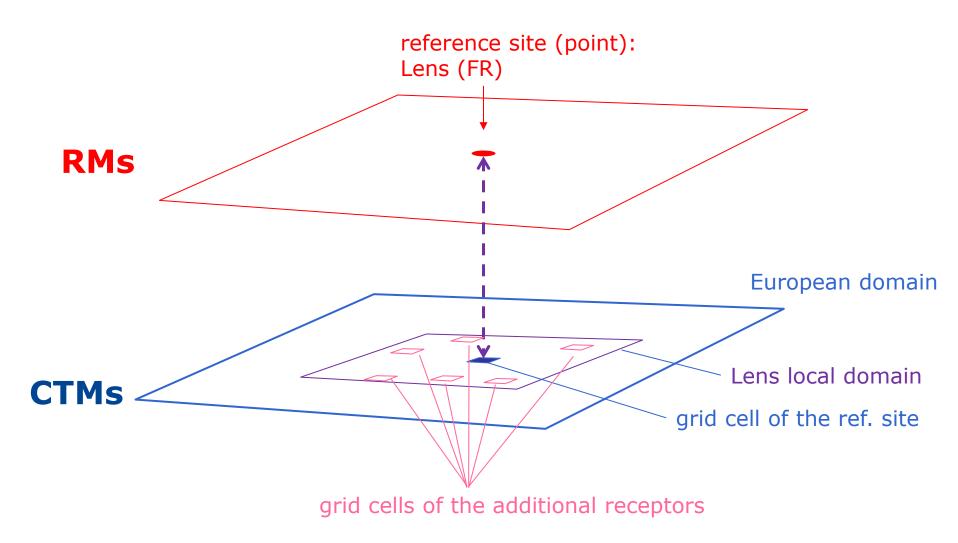
O. Favez, J.L. Jaffrezo, J. Kuenen, H. Denier van Der Gon, M. Rezler, M.T. Pay, M. Almeida, F. Amato, A. Aniko, I. Beslic, M. Bove, G. Calori, D. Cesari, C. Colombi, D. Contini, G. De Gennaro, A. Di Gilio, I. El Haddad, H. Elbern, K. Eleftheriadis, G. Foret, M. Garcia Vivanco, S. Gilardoni, M. Grosa, S. Hellebust, R. Hoogerbrugge, P. Hopke, Y. Izadmanesh, H. Jorquera, A. Karppinen, Z. Kertesz, T. Kolesa, P. Lazzeri, F. Lenartz, F. Lucarelli, A. Manders, H. Martins, M. Mircea, D. Mooibroek, S. Nava, D. Oliveira, P. Paatero, M. Paglione, M. Perrone, E. Petralia, A. Pietrodangelo, S. Pilion, P. Pokorna, P. Prati, M. Reizer, V. Riffault, C. Samara, L. Samek, S. Sauvage, F. Scotto, K. Sega, G. Siour, R. Tauler, R. Vecchi, E. Venturini, M. Vestenius, E. Yubero

Schedule of the IE

Applications: 79

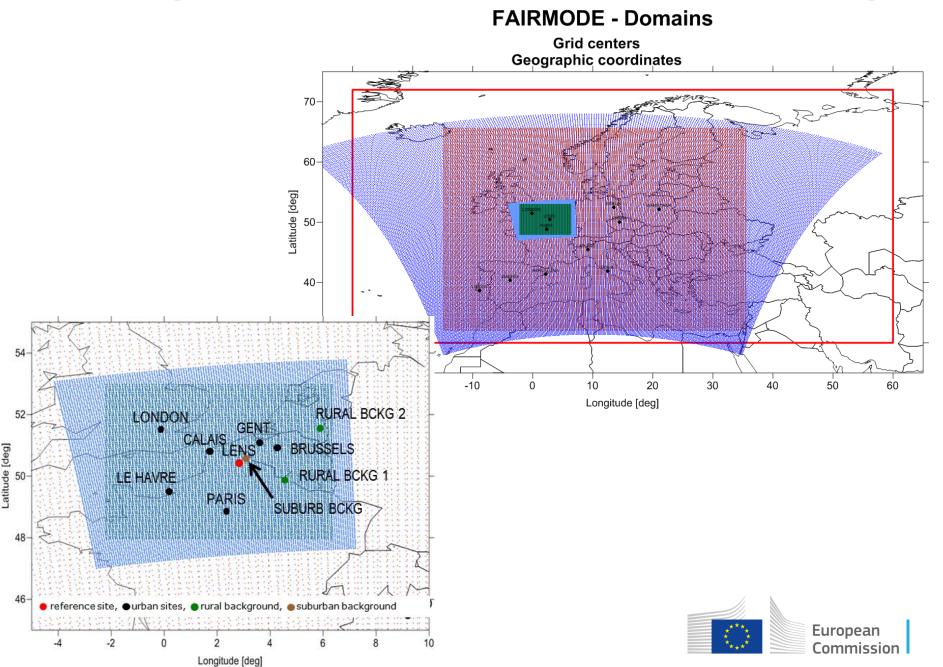
Withrawed: 39

delivered: 40 teams (33 RM, 7 CTM)


- □ Data distributed in July 2015
- □ Update in November 2015
- □ Receptors for CTM in January 2016
- □ RM results reported 33 teams
- \Box Questionnaire for RMs in first quarter 2016
- □ CTM results reported by 7 teams
- Requests of clarifications and correction of inconsistencies needed
- □ Questionnaire for CTMs in spring 2017

CTM CONSORTIA

ENEA /ARIANET/ ARPA PIEMONTE	joint result		
CIEMAT/LISA -CNRS	jont result		
RIER- UNI KOLN	independent result		
TNO	independent result		
ARPAV	coodinated result		
RSE	coordinated results		
UNI AVEIRO	cordinated results		



Domains and receptors

Intercomparison outline – Source oriented models (CTM)

Intercomparison set up

- Common input dataset
 ECMWF meteorology
 TNO emissions with fuel detail
 MACC chemical fields
- MPE using ca. 200 Airbase stations (centralised by RSE)

Study Periods

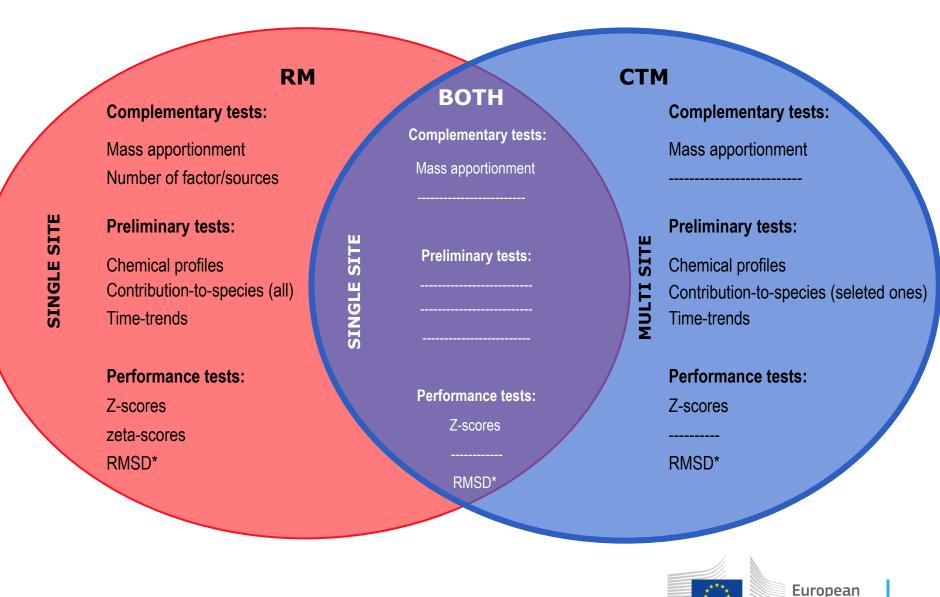
Summer: from 1/6/2011 to 1/08/2011

Winter: from 15/11/2011 to 5/2/2012

Receptors for SA results ----->

Station Code	Station Name	Region	Station Type	Area Type
LENS_SA	Lens-CARA	FRANCE	Background	urban
CALAIS_SA	Sangatte	FRANCE	Background	suburban
LE_HAVRE_SA	Le Havre Henri Fabre	FRANCE	Background	urban
PARIS_SA	PARIS 6eme	FRANCE	Background	urban
LONDON_SA	LONDON N. KENSINGTON	UNITED KINGDOM	Background	urban
BRUXELLES_SA	41R012 - UCCLE	BELGIUM	Background	suburban
GENT_SA	Gent	BELGIUM	Background	urban
SUBU_BKGD_SA	40MN01 - MENEN	BELGIUM	Background	suburban
RUR_BKGD1_SA	REVIN	FRANCE	Background	rural
RUR_BKGD2_SA	Vredepeel-Vredeweg	NETHERLANDS	Background	rural

Definition of sources


SNAP		Mandatory 8 sources	Optional 14 sources
1	Energy industry	01_ENI	01_ENI
21	R & C combustion, coal	99_OTH	02_ОТН
22	R & C combustion, light liquid fuel	99_OTH	02_OTH
23	R & C combustion, medium liquid fuel	99_OTH	02_OTH
24	R & C combustion, heavy liquid fuel	99_OTH	02_OTH
25	R & C combustion, gas	99_OTH	02_OTH
26	R & C combustion, solid biomass (wood)	02_BIO	02_BIO
34	Industry (combustion & processes)	34_IND	34_IND
5	Fugitive emissions from fuels	99_OTH	99_OTH
6	Product use including solvents	99_OTH	99_OTH
71	Road transport, exhaust, gasoline	07_RTR	71_RTG
72	Road transport, exhaust, diesel	07_RTR	72_RTD
73	Road transport, exhaust, LPG/natural gas	07_RTR	07_RTR
74	Road transport, non-exhaust, evaporation	07_RTR	07_RTR
75	Road transport, non-exhaust, wear	07_RTR	75_RTW
8	Non-road transport	99_OTH	99_OTH
81	International shipping, marine diesel oil	08_SHP	08_SHP
82	International shipping, heavy fuel oil	08_SHP	08_SHP
9	Waste treatment	99_OTH	99_OTH
10	Agriculture	10_AGR	10_AGR
11P	Dust	11_DST	11_DST
11	Sea Salt	99_OTH	11_SLT
11	Biogenic SOA	99_OTH	11_BSO

8 - 14 source categories defined for comparability with RM source categories (SPECIEUROPE used as reference) The optional set with higher detail on domestic, traffic and primary inorganic aerosol (dust/salt)

3 + 3 summer/winter months Hourly concentrations (current evaluation for daily averages) Primary and secondary PM PM precursors

Evaluation in this IE

Commission

CTM RESULTS

id	model	method	MANDATORY	OPTIONAL
cA	CAMx	СТМ	selected for reference	
сАо	CAMx	СТМ		selected for reference
cAs	CAMx	СТМ	sensitivity run	sensitivity run
cAso	CAMx	СТМ	sensitivity run	sensitivity run
cAs2	CAMx	СТМ	sensitivity run	sensitivity run
сВ	FARM	СТМ	selected for reference*	
сВо	FARM	СТМ		selected for reference*
cD	LOTOS	СТМ	selected for reference	
cDo	LOTOS	СТМ		selected for reference
cE	EURAD	СТМ	selected for reference*	
cF	CHIMERE	СТМ	NH_4 and NO_3 not reported	NH_4 and NO_3 not reported

Mandatory: few sources, all participants Optional: many sources, few participants

CTM results indicated with letters from A to F preceded by c (low case). o: optional; s: sensitivity run

Green background indicates results used to calculate the reference for mandatory and optional respectively. Sensitivity runs not used for reference.

*not considered when only tagged species approach used for reference

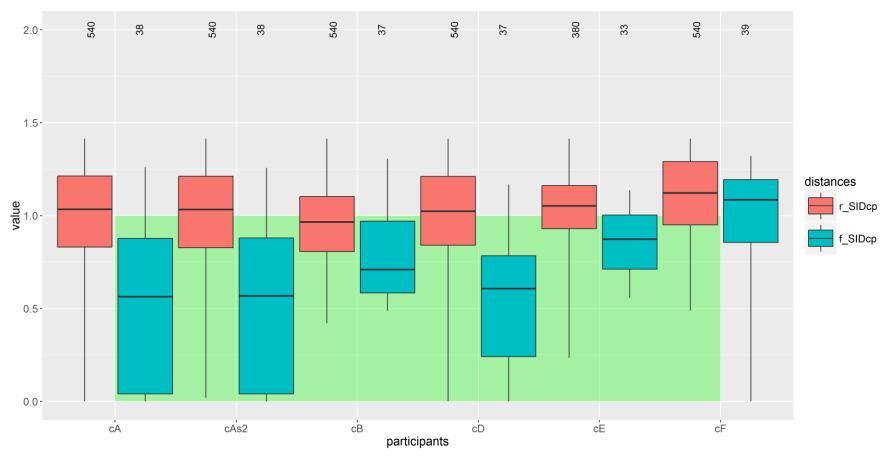
Overview of SA methods commonly used in Europe Different CTM approaches used for SA

	Tagged species	Brute force (top down)
Description	Tagged species are used to track the contributions of sources in every grid cell by mass balance. Conc. = (emission+ import+ formation) – (export+ degradation+ deposition)	Estimate the contribution of sources by comparing the BC with a run where the source of interest has been reduced by a given % over the whole domain.
Underlying question	What is the actual contribution of sources in the studied area/time window?	What would be the reduction in concentrations corresponding to a given reduction in emissions?
Mass apportionment	Coherence between sum of sources and total pollutant mass	The total mass of the different sources is obtained from independent runs. The sum of the sources maybe not coherent with the base case. Post processing would be needed to re-normalise the source contributions.
Advantages	Accomplishes the apportionment in one single run Reflects the situation that caused the exceedance	Respond to the question of interest for the policy maker (air quality manager)
Disadvantages	The actual contribution of a source is not necessarily what can be actually abated with a measure	Requires many runs Distortion may be caused by normalising source contributions to match the base case

Evaluation of CTM SA applications

Evaluation of base case and sensitivity runs...

Mass **Apportionment** (mandatory)

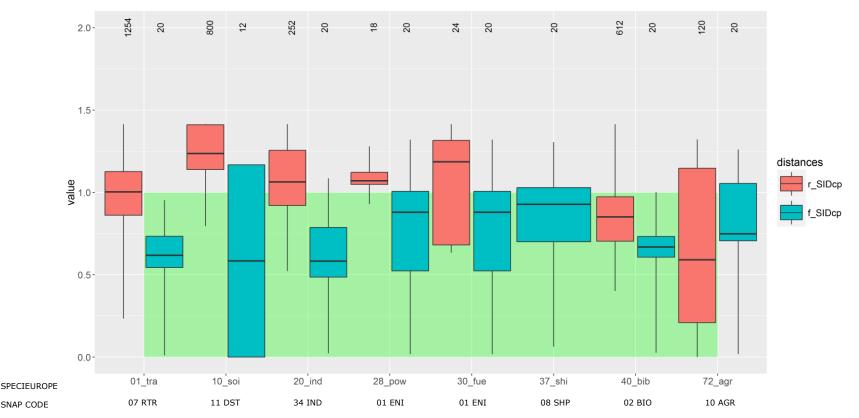

Sum of sources below the total mass but within the acceptability area. Result cF often in rejection area with the exeption of Paris and cB overstimates only in London

BIAS/2u

SID by participants (mandatory set)

Lens Comparison between the chemical profiles of the sources (i.e. the mass attributed to the chemical species)

- r = distances to the reference chemical profiles (cp) in SPECIATE/SPECIEUROPE
- f = distances among the candidate sources
- top = number of distances, green = acceptability area


Candidate sources comparable among each other but no with the reference cp. There are no significant differences between results with mandatory and optional set of sources. cF is not similar to the other results.

Europear

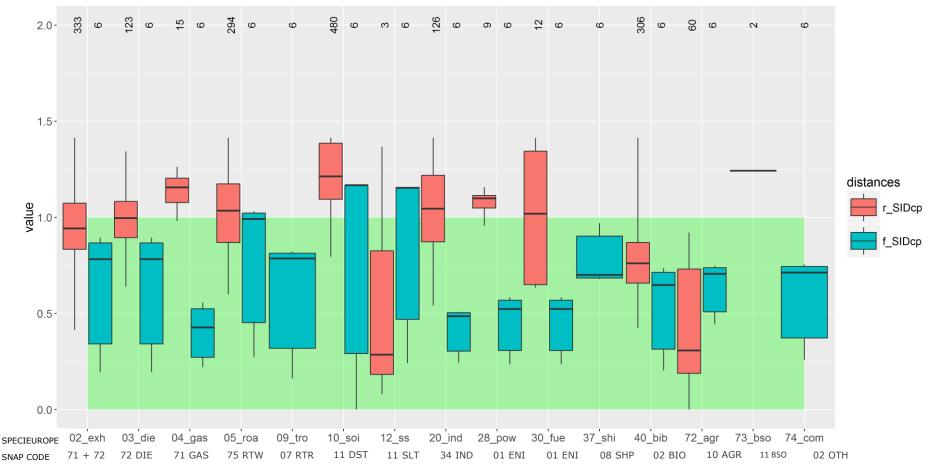
Commission

SID by sources (mandatory set)

Lens Comparison between the chemical profiles of the sources (i.e. the mass attributed to the chemical species)

r = distances to the reference chemical profiles (cp) in SPECIATE and SPECIEUROPE

 $\mathsf{f}=\mathsf{distances}$ among the candidate sources


top = number of distances, green = acceptability area

Candidate sources comparable among each other. Traffic, soil, industry and power plant, not comparable with the reference.

SID by sources (optional set)

Lens Comparison between the chemical profiles of the sources (i.e. the mass attributed to the chemical species)

r = distances to the reference chemical profiles (cp) in SPECIATE and SPECIEUROPE

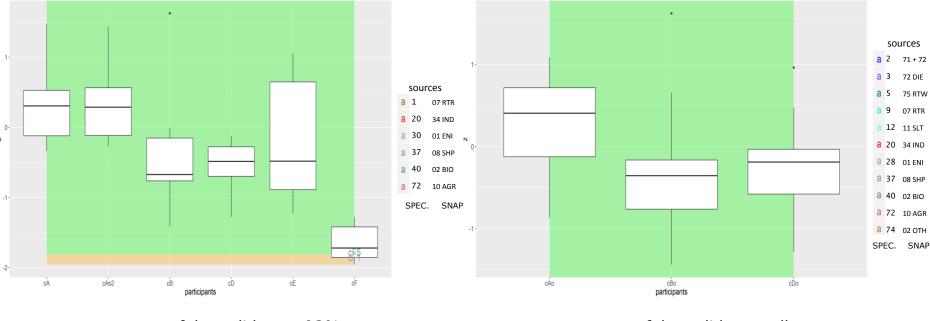
f = distances among the candidate sources

top = number of distances, green = acceptability area

Sea salt most comparable with the reference but variable scores between participants. Gasoline, road dust and power plant not comparable with the reference. Soil cps are not comparable both with reference and among results. European

Commission

CTM performance tests


Performance CTMs z-score (overall sce)

Reference = all models

Lens

sce = source contribution estimate

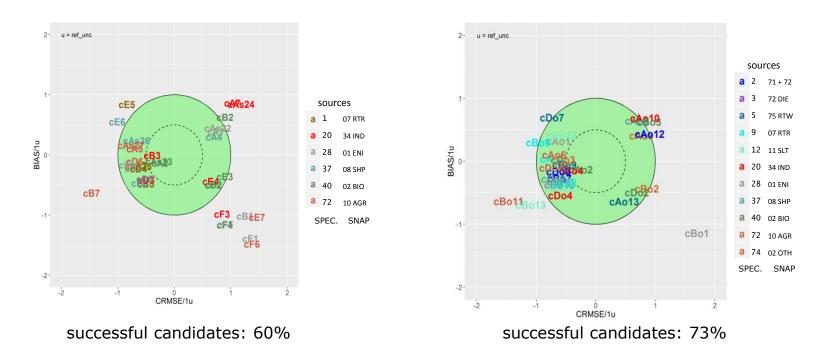
mandatory

optional

successful candidates: 93%

successful candidates: all

Ship and power plants understimated in cF likely due to role of nitrate and ammonia in these sources


Performance RMs Target plot (sce time series)

Reference = all models

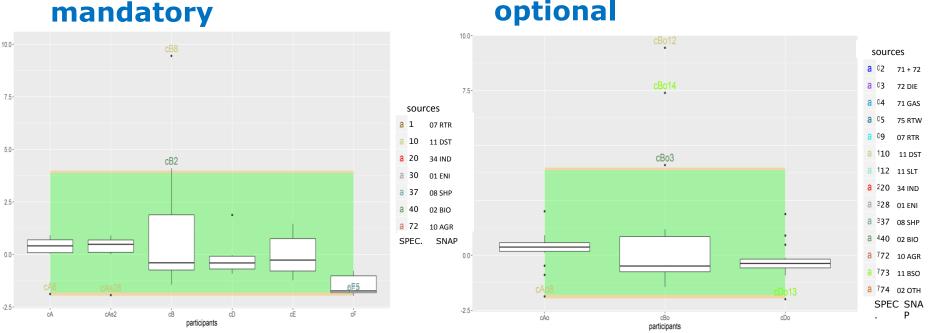
Lens

sce = source contribution estimate

mandatory

optional

Mandatory: industy often scoring out of the acceptability area. cF only pass biomass burning Optional: cBo highest number of rejected RMSEu.


Performance CTMs z-score (overall sce)

Reference = in this case only tagged species were used in the reference to test if there are measurable differences between the two CTM approaches

Lens

Ν

sce = source contribution estimate

mandatory

successful candidates: 80%

successful candidates: 87%

Mandatory: soil and biomass burning overestimated in cB, soil understimated in cA while cF underestimates power plant and ship.

Optional: cB overestimates soil, biomass burn. and biogenic, cA underestimates soil and cD underestimates biogenic.

Performance RMs Target plot (sce time series)

Reference = in this case only tagged species were used in the reference to test if there are measurable differences between the two CTM approaches

optional

sce = source contribution estimate

sources cB2 u = ref_unc u = ref_unc cBo₃ a 2 71+72 2 а 3 72 DIE cE5 4 71 GAS sources cBo14 5 75 RTW a 1 07 RTR cE6 9 07 RTR a 10 11 DST 10 11 DST BIAS/1u BIAS/1u 34 IND 20 12 11 SLT 30 01 FNI a 20 34 IND cE1 08 SHP a 28 01 ENI cB7 40 02 BIO cBo₂ a 37 08 SHP cF3 -1 -1cE7CB1 72 10 AGR cBo1 40 02 BIO a SPEC. SNAP cFf cF1 72 10 AGR a a 73 11 BSO -2--2a 74 02 OTH -2 2 -2 -1 2 CRMSE/1u SPEC. SNAP CRMSE/1u

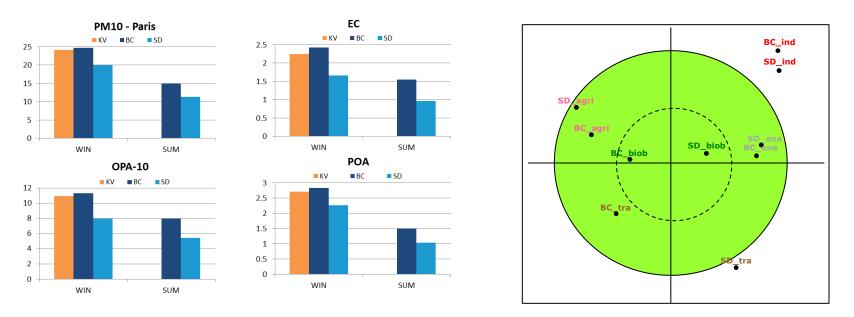
mandatory

Lens

successful candidates: 51%

successful candidates: 77%

Mandatory: cB,cD and cF not comparable with the reference for agriculture, power plant, soil and traffic. cB and cE problems with biomass burning (overstimation or lack of correlation). cF passes only biomass burning. Optional: cBo highest number of rejected RMSEu. OK for diesel, industry, road dust and ship.

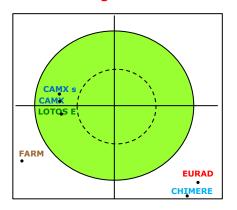


Sensitivity tests

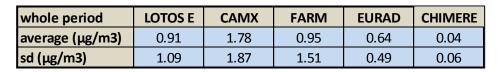
Thanks to J. Ferreira (Univ. Aveiro)

The goal of the sensitivity test was to evaluate the influence of the reduced horizontal resolution on the CAMX output.

To that end, CAMx runs were performed with two different grid steps 7 km (BC) and 20 km (SD). The reduced cell dimension in an area close to primary emissions (traffic) was expected to cause a reduction in the concentrations of pollutants associated with that source.

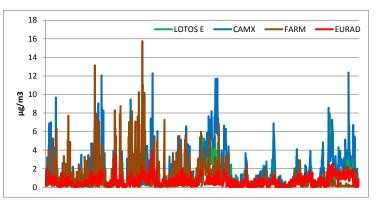

A PM_{10} concentration decrease for SD matched a decrease in elemental carbon (EC), primary organic aerosol (POA) and other primary anthropogenic aerosol (OPA-10) compared to the base case.

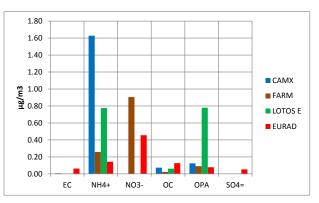
When comparing the performances of PSAT using two different grid steps it was also observed that the contribution of traffic was underestimated when using low spatial resolution. No significant changes were observed in the other tested sources (industry, energy production, biomass burning and agriculture).



The source chemical profiles: the case of Agriculture

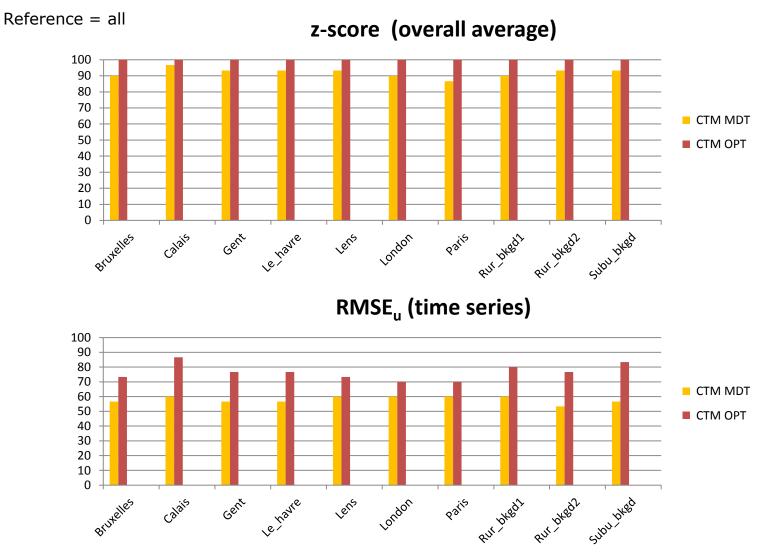
Performance of CTMs for Agriculture




Time trends for Agriculture

R	LOTOS E	CAMX	FARM	EURAD	CHIMERE
LOTOS E	1	0.60	0.26	0.50	0.37
CAMX	0.60	1	0.42	0.52	0.49
FARM	0.26	0.42	1	0.27	0.24
EURAD	0.50	0.52	0.27	1	0.25
CHIMERE	0.37	0.49	0.24	0.25	1

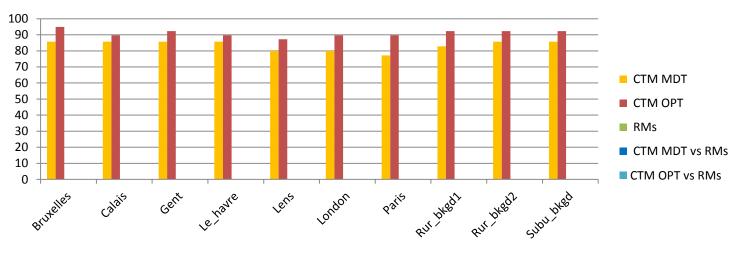
Chemical profiles for Agriculture



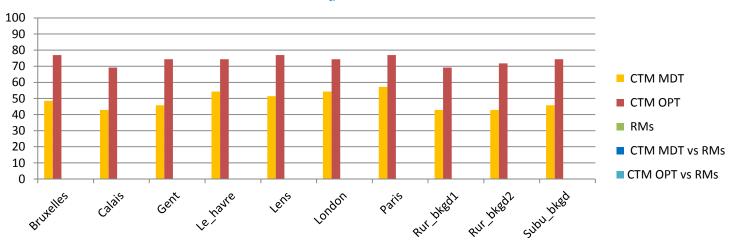
The contributions to $PM_{2.5}$ from agriculture, a complex source, were analysed more into detail. CAMx presents the highest contributions on average.

The time trends of CAMx and LOTOS EURO where the most correlated among each other. FARM present highest levels in summer while LOTOS EURO shows highest ones in winter. The chemical components associated with this source provide evidence about the underlining assumptions of the different types of model approaches (tagged species or brute force).

Performance CTMs ALL RECEPTORS


In general the geographic patterns are quite homogeneous among sites.

In z-score mandatory Paris and London slightly lower perfromance than other sites (bias problem). However these sites are among those with better perfomance in the target plots (-> good estimation of the time trends near sources).


Performance CTMs ALL RECEPTORS

Reference = tagged

z-score (overall average)

RMSE_u (time series)

In general the geographic patterns are quite homogeneous among sites.

In z-score mandatory Paris and London slightly lower perfromance than other sites (bias problem). However these sites are among those with better perfomance in the target plots (-> good estimation of the time trends near sources).

Conclusions of the IE (2)

CTMs

- CTMs show good performances when tested using an ensemble reference, especially z score test (overall average).
- No significant differences in performance between sites suggest that CTMs have a rather comparable geographical pattern likely due to same input data (EI, meteo).
- The sensitivity analysis for CTM demonstrates the influence of the spatial resolution on the SA performance of models in densely populated areas.
- More effort is needed to improve and harmonise the estimation of soil and road dust sources, in particular in the emission inventories.
- When using tagged species as reference, differences between tagged species and brute force are mainly observed in sources involved in secondary processes (agriculture, power plants, traffic, biomass burning, etc.).
- The analysis of CTM chemical profiles was useful to detect differences between models and/or approaches

Thank you for your attention

