

# FAIRMODE Technical Meeting Working Group 2 - Emissions 19-22 June 2017 Athens, Greece



# Spatiotemporal distribution of anthropogenic and biogenic emissions over Greece - A GIS approach

Fameli Kyriaki-Maria, Dimitropoulou Ermioni and Assimakopoulos Vasiliki

Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Greece



#### Introduction



- ✓ The Greater Athens Area has significantly changed in recent years due to large scale infrastructure works.
- ✓ Photochemical and particulate pollution episodes continue to appear.
- ✓ Limited numerical studies of pollutant dispersion above the GAA due to the lack of detailed and updated emissions data.
- ✓ Development of an updated emission inventory, with open structure (FEI-GREGAA) for the years 2006-2012.
- ✓ Use as input data to the photochemical CAMx model for Greece and the GAA.



#### Introduction



Earlier efforts to develop such databases for Greece and the GAA

✓ resulted from temporal and spatial annual low resolution data (50x50km²) from (EMEP) (Aleksandropoulou et al. 2004, 2011) – reference year 2007,

✓ the reference year was old (2003) without updated traffic volume data (Markakis et al. 2010),

✓ only consisted of annual emissions not spatially and temporally allocated (*Progiou and Ziomas 2011, 2012*),



## Introduction

#### **Objective**

 Quantitative and qualitative conclusions concerning the type of sources that contribute to the air quality of the GAA OBSERVATO

Applications with photochemical models

#### **Pollutants**

• CO, NOx, PM, SO<sub>2</sub>, NH<sub>3</sub>, NMVOC and biogenic VOCs

#### **Spatial scale**

• 6x6 km<sup>2</sup>(Greece) and 2x2 km<sup>2</sup> (Athens)

#### **Data sources**

Official data provided by national authorities

#### **Period**

• 2006-2012 (in updating process)

#### Methodology

Development of a methodology for the spatial mapping of emissions

• EMEP/EEA Emission Inventory Guidebook 2013

• Development of temporal coefficients for the GAA

FAIRMODE Technical Meeting WG2 - Emissions
19-22 June 2017 Athens, Greece



# Grids



#### **Greater Athens Area (GAA)**









# General Methodology – Anthropogenic emissions



SNAPS 1, 3, 4, 5, 9:

➤Industrial activity data were collected by the European Pollutant Release and Transfer Register (E-PRTR, eprtr\_v5.1, http://prtr.ec.europa.eu/)

SNAP 2 - Small combustion

➤ Top down: Data from the National Energy Data System of the Ministry of Reconstruction of Production, Environment and Energy (NEDS-MRPEE) and Odyssee - Mure project

SNAP 7 – Road Transport

➤ Bottom-up for the GAA: Tier 3 approach (COPERT 4), Total number of vehicles (DoT, ELSTAT etc), Min. Max. T, RH, Annual fuel consumption (MRPEE), traffic flow data (KDK).



# General Methodology – Anthropogenic emissions

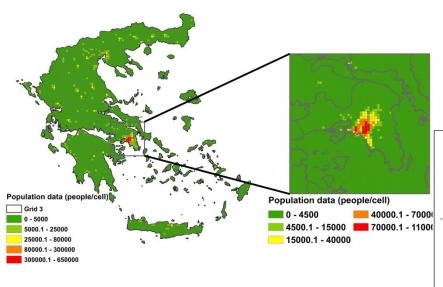


SNAP 8 – Navigation, Aviation, Off-road vehicles

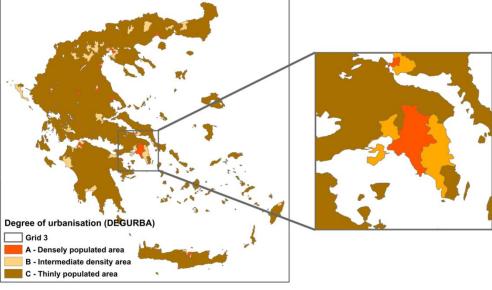
➤ Bottom-up: Tier 2, Seasonal emissions estimation (10 ship types, 85 Greek ports) FUROSTAT

➤ Bottom-up: Tier 2, emissions estimated on a monthly scale for the 38 Greek airports (Eurostat Database, Greek Civil Aviation Authority)

➤ Top-down: Tier 1 (Eurostat Database)


#### SNAP 10- Agriculture

➤ Bottom-up: Tier 1, annual population of animals by prefectures, amount of N applied, agricultural crop areas (Eurostat, ELSTAT)




# Spatial allocation of emissions

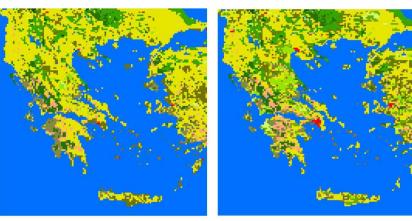




The 2011 population census data (Source: Eurostat)



**FAIRMODE Technical Meeting** WG2 - Emissions 19-22 June 2017 Athens, Greece


The degree of urbanisation (Source: Eurostat)



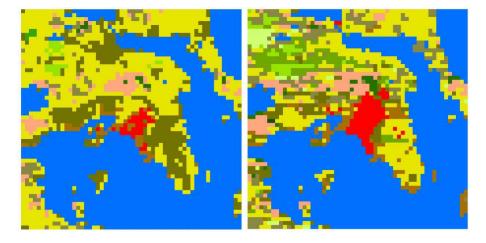
# Spatial allocation of emissions



#### Land use






- 1 Urban and Built-Up Land
  - 2 Dryland Cropland and Pasture
  - 3 Irrigated Cropland and Pasture 4 Mixed Dryland/Irrigated Cropland and Pasture
- 5 Cropland/Grassland Mosaic
- 6 Cropland/Woodland Mosaic
  - 7 Grassland



#### 8 Shrubland

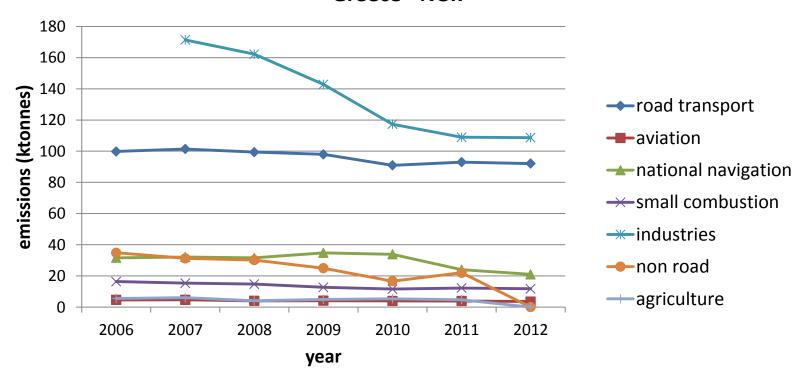
- 9 Mixed Shrubland/Grassland
- 10 Savanna
- 11 Deciduous Broadleaf Forest

- 14 Evergreen Needlelleaf Forest
- 15 Mixed Forest
- 16 Water Bodies



#### **USGS LULC Categories**

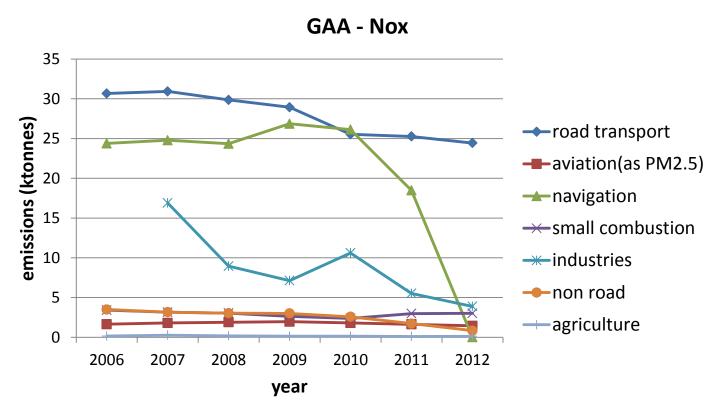
- 1 Urban and Built-Up Land
  - 2 Dryland Cropland and Pasture
- 3 Irrigated Cropland and Pasture
- 4 Mixed Dryland/Irrigated Cropland and Pasture
- 5 Cropland/Grassland Mosaic
- 6 Cropland/Woodland Mosaic


- 8 Shrubland
- 9 Mixed Shrubland/Grassland
- 10 Savanna
  - 14 Evergreen Needleleaf Forest
- 15 Mixed Forest
- 16 Water Bodies



## Annual variation of emissions










## Annual variation of emissions

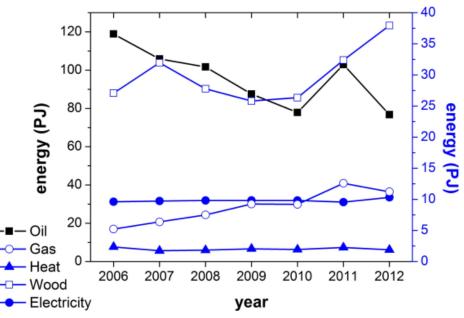




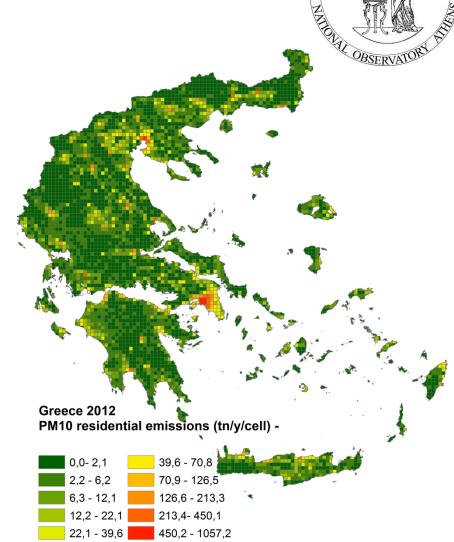


# Anthropogenic emissions




Why is it important to use **detailed** and **updated** emissions data?

Case: Small combustion




## SNAP2 - Small combustion





Biomass consumption for residential heating increased by 37% while the oil consumption decreased by 24%.

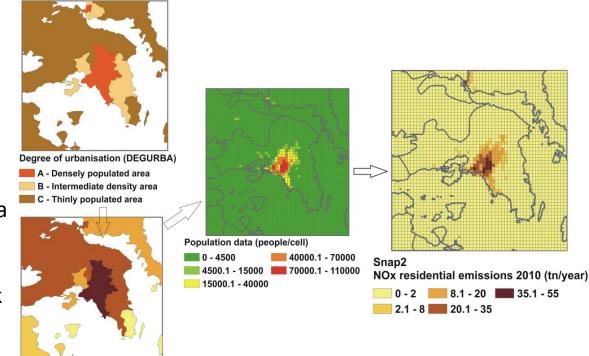


**FAIRMODE Technical Meeting** WG2 - Emissions 19-22 June 2017 Athens, Greece



# SNAP 2 – Spatial allocation

NOx emissions 2010 (tonnes/area)

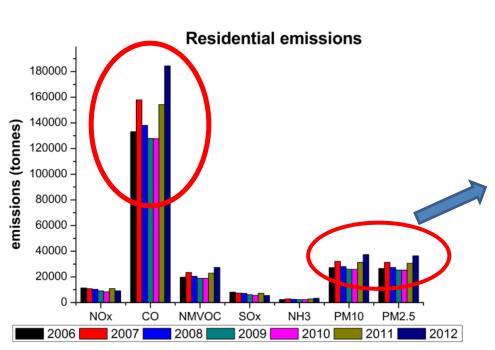

51 - 15 120.1 - 1800

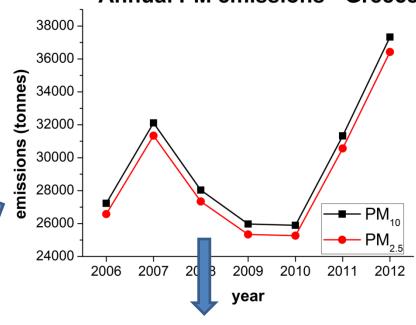
15.1 - 30



#### **Spatial allocation**

- √ The degree of urbanization (DEGURBA),
- √The 2011 population density data (Eurostat) and
- ✓ A survey conducted by the Greek Statistical Authority (EL.STAT.) regarding the residential energy consumption for the period October 2011 September 2012




## **SNAP 2 - Results**

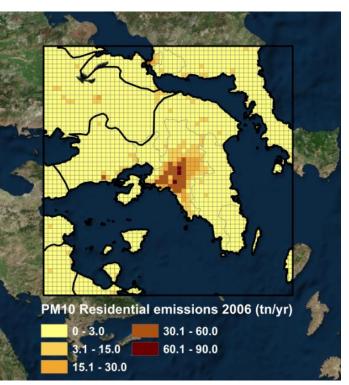


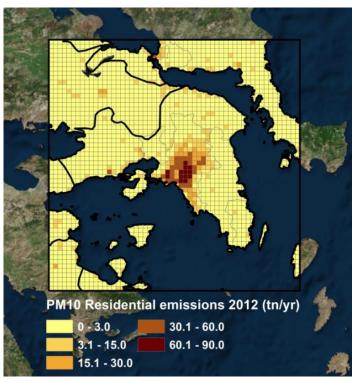
#### **Annual PM emissions - Greece**





Annual variation of residential emissions for Greece.


# PM<sub>10</sub> 29.86% 68.41% 1.73% fireplaces stoves boiler


# **FAIRMODE Technical Meeting** WG2 - Emissions 19-22 June 2017 Athens, Greece



## **SNAP 2 - Small combustion**







2006-2011: 8.5% and 9.0% of national CO and PM<sub>10</sub> emissions are attributed to the GAA, because they are related to biomass burning which is very popular at the rural areas in Greece.

2012: the specific percentages were 12.0% and 12.5% respectively revealing the fact that wood burning increased.



#### EMEP VS FEI-GREGAA E.I.

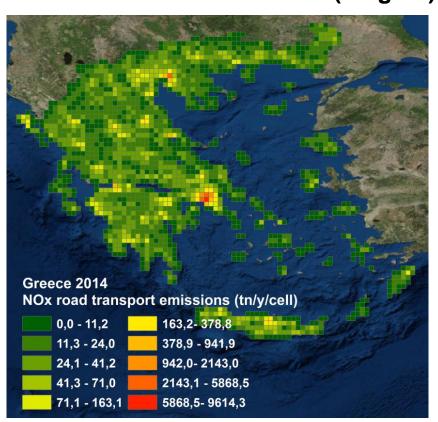


#### Annual variation of PM<sub>10</sub> emissions (in ktonnes) for Green FEI-GREGAA

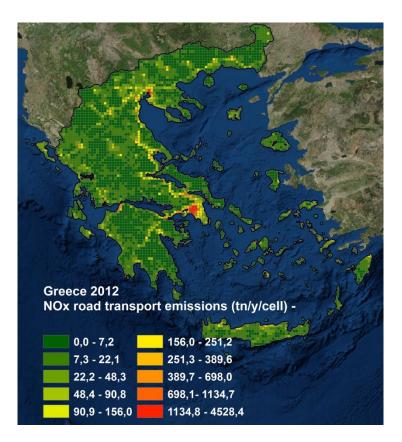
| Year | Road transport | Aviation   | Navigation | Small      | ndustries | Non road  | Agriculture | Total |
|------|----------------|------------|------------|------------|-----------|-----------|-------------|-------|
|      |                | (as PM2.5) |            | combustion |           | transport |             |       |
| 2006 | 4.42           | 0.0110     | 1.80       | 27.84      | -         | 1.80      | 0.86        | 36.73 |
| 2007 | 4.60           | 0.0087     | 1.83       | 32.65      | 71        | 1.62      | 1.25        | 73.66 |
| 2008 | 4.48           | 0.0049     | 1.78       | 28.55      | 36        | 1.56      | 1.24        | 60.98 |
| 2009 | 4.64           | 0.0044     | 1.96       | 26.39      | .09       | 1.31      | 1.21        | 53.60 |
| 2010 | 4.30           | 0.0047     | 1.92       | 26.28      | .86       | 1.15      | 3.80        | 51.30 |
| 2011 | 4.43           | 0.0041     | 1.48       | 31.52      | 12.98     | 0.86      | 3.80        | 55.09 |
| 2012 | 4.44           | 0.0038     | 1.3        | 37.64      | 12.61     | 0.00      | 3.72        | 58.42 |

PM<sub>10</sub> emissions (in ktonnes) for Greece. (Source: WebDab - EMEP ns database, updated in

2015).


| Year | Road      | Other   | Small      | dustries | Agriculture | Total        |
|------|-----------|---------|------------|----------|-------------|--------------|
|      | transport | transpg | combustion |          |             |              |
| 2006 | 7.29      | 6.18    | 13.25      | 1.65     | 11.86       | 80.22        |
| 2007 | 7.00      | 5.9     | 12.71      | 7.75     | 11.89       | <i>75.32</i> |
| 2008 | 6.71      | 5.7     | 12.17      | 1.45     | 11.93       | 71.01        |
| 2009 | 6.42      | 5.5     | 11.63      | 1.16     | 11.96       | 66.71        |
| 2010 | 6.14      | 5.33    | 11.09      | 7.86     | 11.98       | 62.39        |
| 2011 | 5.71      | 5.13    | 10.68      | 26.60    | 11.94       | 60.07        |
| 2012 | 5.29      | 4.93    | 10.27      | 25.35    | 11.90       | 57.74        |




#### The new EMEP grid VS FEI-GREGAA



#### **2014 EMEP Grid in 0.1°x0.1° (long-lat)**



#### 2012 FEI-GREGAA Grid in 6x6 km<sup>2</sup>





# Biogenic VOC emissions – General Methodology



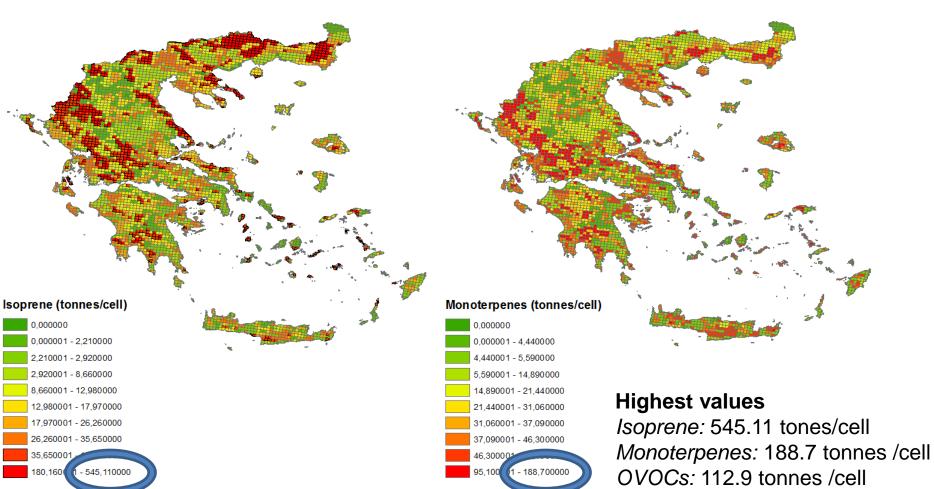
Temperature data
(www.meteo.gr)

Land use profiles

Photosynthetically
active radiation (PAR) –
www.solea.gr

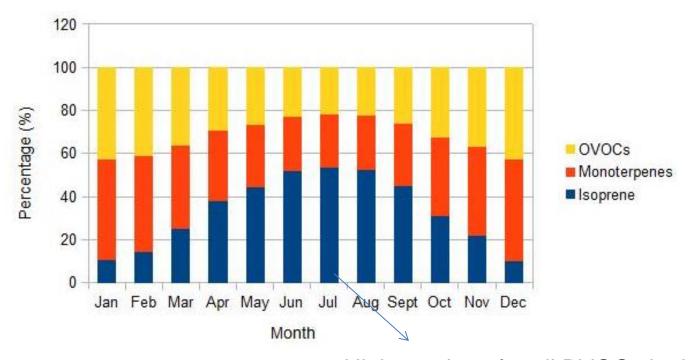
Equations from Guenther et al., 1993

Foliar biomass density form Steinbrecher et al., (2009) – NatAir project

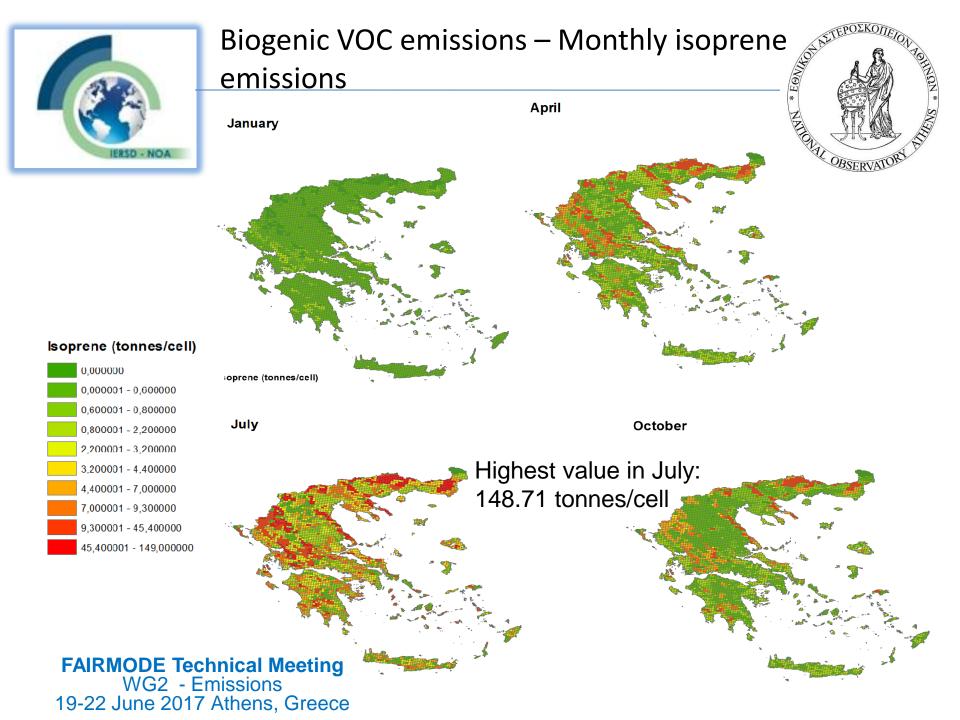

Monoterpenes
Isoprene
OVOCs

**FAIRMODE Technical Meeting** WG2 - Emissions 19-22 June 2017 Athens, Greece




# Biogenic VOC emissions – Annual values






#### Biogenic VOC emissions - Results

Monthly variation of OVOCs, Monoterpenes and Isoprene emissions percentages for Greece



Higher values for all BVOCs in July Isoprene 53.6 %, Monoterpenes 24.4 % OVOCs 22%





# Biogenic VOC vs Anthropogenic VOCs



#### **BVOCs and Anthropogenic VOCs in ktones/year for Greece**

| Isoprene | Monoterpenes | OVOCs | Total BVOCs | Total<br>anthropogenic<br>VOCs |
|----------|--------------|-------|-------------|--------------------------------|
| 220      | 132          | 120   | 472         | 325                            |

# Thank you!!!