Exceedance modelling in the context of the data fusion mapping under ETC/ACM

Jan Horálek (CHMI)

Peter de Smet, Frank de Leeuw (RIVM), Pavel Kurfürst, Nina Benešová (CHMI), Philipp Schneider (NILU)

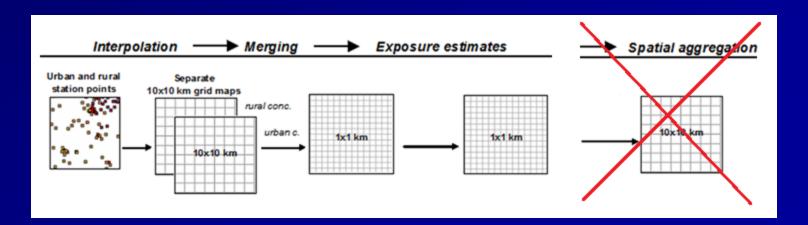
European Topic Centre
on Air Pollution and
Climate Change Mitigation

National Institute for Public Health and the Environment

1. Mapping methodology

Estimation of area in exceedance Estimation of population living in exceedance areas

2. Influence of grid resolution


3. Case study: NO₂ improved mapping incl. traffic

4. Conclusion and recommendation

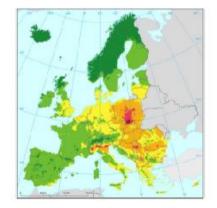
Data fusion mapping methodology

Regression – Interpolation – Merging Mapping

Linear regression model of monitoring data (as a primarily source of information), CTM output and different other supplementary data followed by *interpolation of its residuals* by kriging (so-called residual kriging). Rural and urban background map layers created separately (based on rural resp. urban/suburban background stations) and *merged* into the final maps using population density.

Annual air quality maps

Regular annual product: *ETC/ACM Technical Paper "European air quality maps"*


Concentration maps (PM_{10} , $PM_{2.5}$, O_3 , NO_2 , NO_x), probability of exceedance maps, exposure tables, uncertainty analysis, inter annual difference maps, trends.

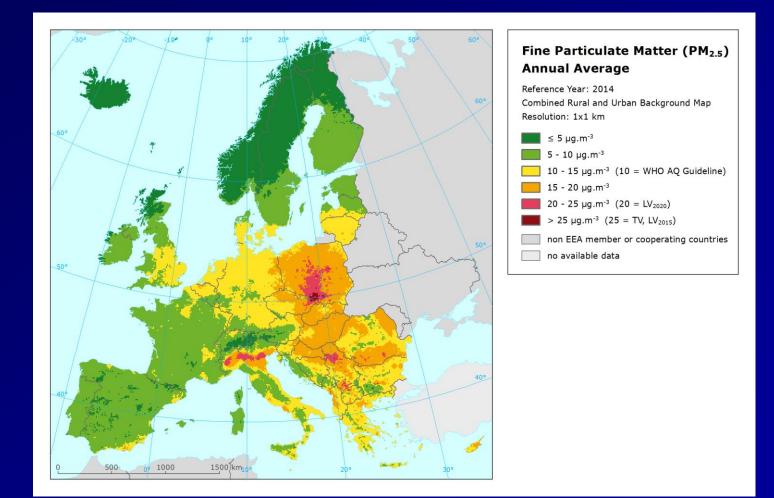
Most recent: *ETC/ACM TP* 2016/6, maps and tables for 2014

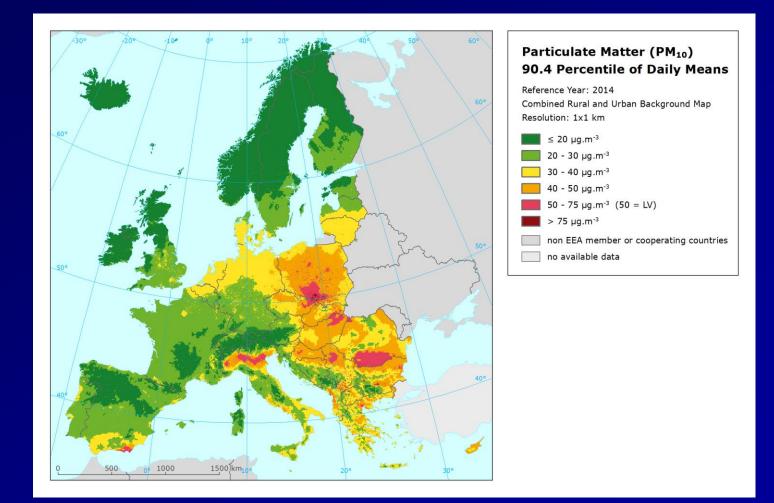
http://acm.eionet.europa.eu/reports/

European air quality maps for 2014

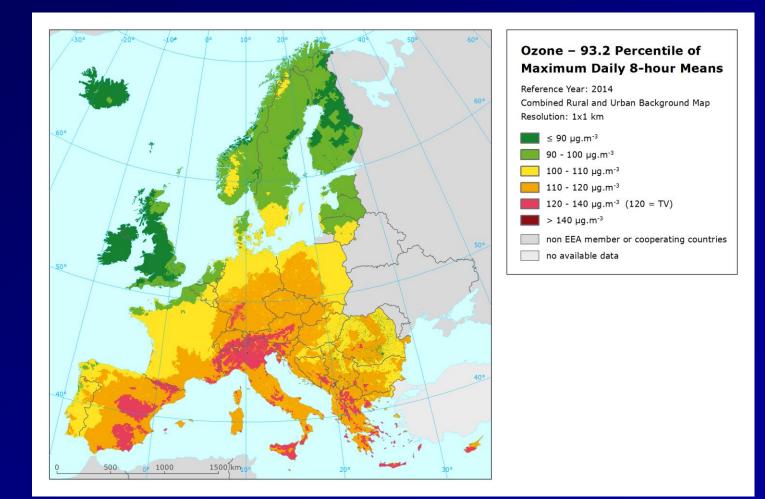
PM₁₀, PM₂₅, Ozone, NO₂ and NO_x spatial estimates and their uncertainties

ETC/ACM Technical Paper 2016/6 December 2016

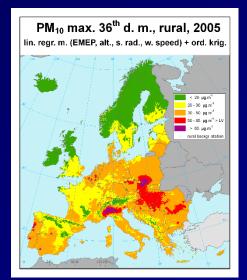

Ion Horálek, Peter de Smet, Frank de Leeuw, Puvel Korfürst, Ninu Benešová

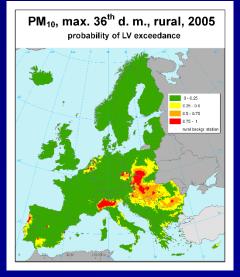

The Enropean Topic Centrem Mr. Initiative and Climice Charge Mitigetim (FTC/ACM) Is a consolition of European Institution under contract of the European Environment Agency INVM Ambre CMICESE ENVIRONMENT CONTraction Party Party UNE USA

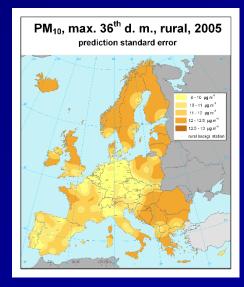
Area in exceedance – concentration maps


*PM*_{2.5} – annual average, 2014

Area in exceedance – concentration maps PM₁₀ – 90.4 percentile of daily means, 2014


Area in exceedance – concentration maps $O_3 - 93.2$ percentile of max. daily 8-hour means, 2014

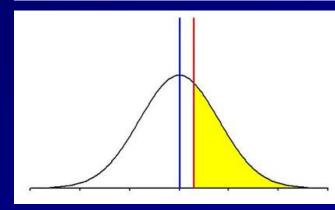


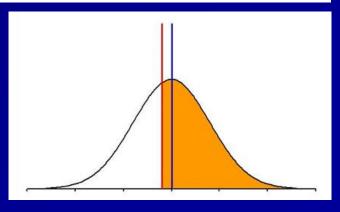

Area in exceedance – PoE maps

Probability of exceedance (PoE) maps

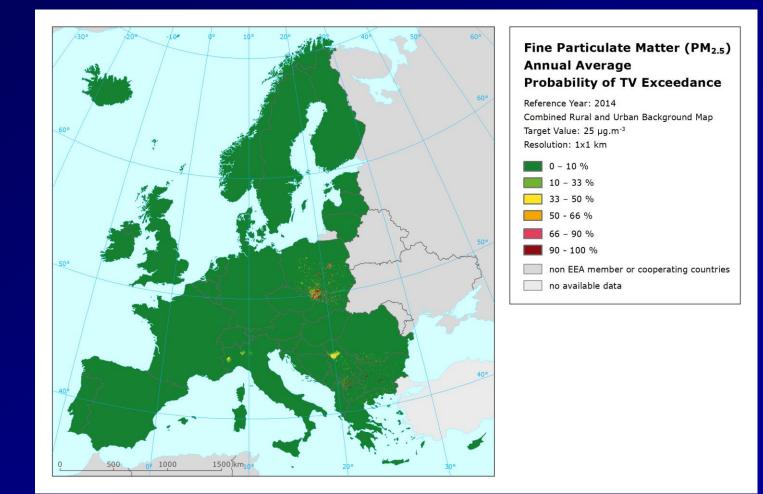

Based on *concentration* and *uncertainty maps* estimated based on geostatistic theory.

Area in exceedance – PoE maps

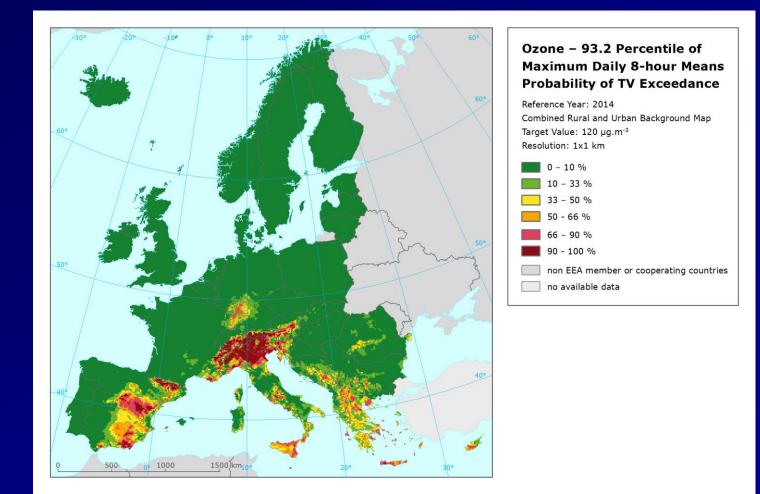

$$PoE(x) = 1 - \Phi(\frac{LV - C_c(x)}{\sigma_c(x)})$$


PoE(x) is the probability of limit/target value (LV/TV) exceedance in the grid cell x, $\Phi()$ is the cumulative distribution function of the normal distribution,LV is the limit or target value of the relevant indicator,

 $C_c(x)$ is the interpolated concentration in the grid cell x,


 $\sigma_c(x)$ is the standard error of the estimation in the grid cell *x*.

Map class colour	Percentage probability of threshold exceedance	Degree of probability (or likelihood) of exceedance	Likelihood of exceedance			
Green	0-10	Little	Very unlikely	More unlikely than		
Light green	10-33	Low	Unlikely	likely		
Yellow	33 — 5 0	Modest	About as likely as not	пкету		
Orange	50 - 66	Moderate	About as likely as hot			
Light red	66 - 90	Large	Likely	More likely than not		
Dar red	90 - 100	High	Very likely			



Area in exceedance – PoE maps PM_{2.5} – annual average, 2014

Area in exceedance – PoE maps

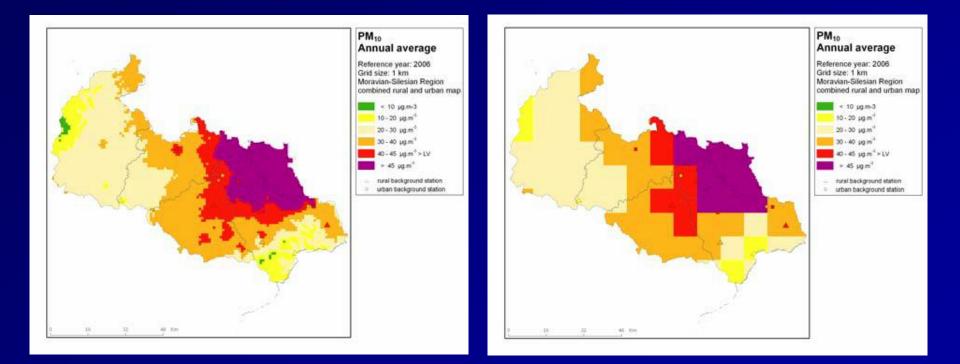
O₃ – 93.2 percentile of max. daily 8-hour means, 2014

Population living in exceedance areas

*PM*_{2.5} annual average, 2014 exposure table

	PM _{2.5} annual average, exposed population [%]								
Country		Population	< LV ₂₀₂₀				> LV	2020	Population
		· · · · · · · · · · · · · · · · · · ·			< TV			> TV	weighted
			< 5	5 - 10	10 - 15	15 - 20	20 - 25	> 25	conc.
		[inhbs . 1000]	μg.m ⁻³	μg.m ⁻³	μg.m ⁻³	μg.m ⁻³	μg.m ⁻³	μg.m ⁻³	[µg.m ⁻³]
Albania	AL	2 896		0.0	24.2	72.8	2.2	0.8	16.5
Andorra	AD	73	0.5	2.7	96.7				10.0
Austria	AT	8 507	0.4	13.0	54.0	32.5			12.9
Belgium	BE	11 204		2.7	67.2	30.0			13.7
Bosnia & Herzegovina	BA	3 831		1.7	47.9	47.4	3.0		15.3
Bulgaria	BG	7 246		0.9	8.4	12.0	33.4	45.2	24.0
Croatia	HR	4 2 4 7		4.8	31.8	63.1	0.3		15.6
Cyprus	СҮ	858			5.0	95.0			17.0
Czech Republic	cz	10 512		0.2	9.5	69.3	13.8	7.2	18.7
Denmark	DK	5 627	0.4	4.2	95.4				11.6
Estonia	EE	1 316		94.9	5.1				8.7
Finland	FI	5 451	1.1	98.4	0.5				7.4
France (metropolitan)	FR	63 989	0.0	31.5	67.4	1.1			11.0
Germany	DE	80 76 7	0.0	2.3	85.5	12.3			13.4
Greece	GR	10 92 7		0.4	29.1	50.6	11.9	8.0	17.0
Spain (excl. Canarias)	ES	44 397	0.1	43.6	55.1	1.2	0.0		10.7
Sweden	SE	9 645	4.0	82.0	13.9				7.6
Switzerland	СН	8 140	0.8	16.6	81.1	1.6			11.6
United Kingdom (& dep.)	υк	64 351	0.2	13.9	86.0				11.6
Total		522 729	0.4	16.4	52.8	18.6	7.7	4.2	14.1
Total		532 738	16	.7	71	4	11	.9	14.1
EU-28		502 424	0.1	16.3	54.2	18.3	7.3	3.7	14.0
EU-20		502 424	16	.4	72	.5	11	.0	14.0

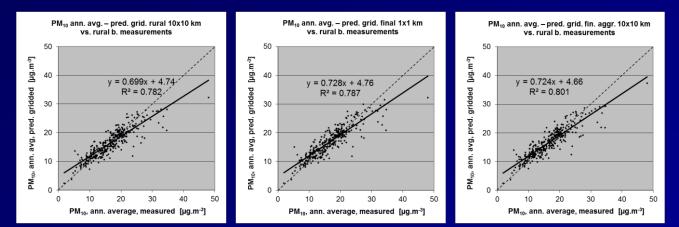
1. Mapping methodology


Estimation of area in exceedance Estimation of population living in exceedance areas

2. Influence of grid resolution

3. Case study: NO₂ improved mapping incl. traffic

4. Conclusion and recommendation

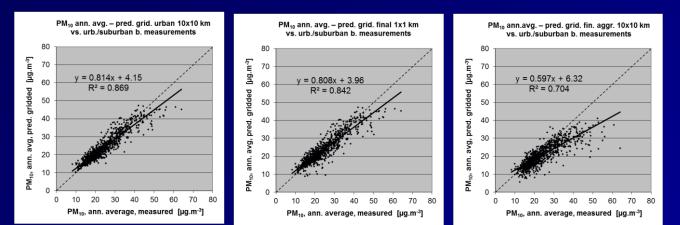

Influence of grid resolution – concentration map *PM*₁₀ – annual average, 2006, Moravian-Silesian Region, CZ

1x1 km

10x10 km (spatially aggregated)

Influence of grid resolution – concentration map *PM*₁₀, annual average, 2014 simple comparison – rural areas

Good representation in both 1x1 km and 10x10 km maps.


rural 10x10

final merged 1x1

final, aggr. 10x10

DM	rural backgr. stations					
PM ₁₀	RMSE	bias	R ²	lin. r. equation		
Annual average						
cross-valid. prediction, separate (r or ub) map	3.5	0.1	0.682	y = 0.666x + 5.71		
grid prediction, 10x10 km separate (r or ub) map	2.9	-0.3	0.782	y = 0.699x + 4.74		
grid prediction, 1x1 km final combined map	2.9	0.2	0.787	y = 0.728x + 4.76		
grid prediction, aggr. 10x10 km final comb. map	2.8	0.0	0.801	y = 0.724x + 4.66		

Influence of grid resolution – concentration map *PM*₁₀, annual average, 2014 simple comparison – urban background areas

Good representation in1x1 km map, but not in 10x10 km map (bias, RMSE, R²).

rural 10x10 final merged 1x1 final, aggr. 10x10

PM ₁₀	urban/suburban backgr. stations					
1 W 10	RMSE	bias	R ²	lin r. equation		
Annual average						
cross-valid. prediction, separate (r or ub) map	4.2	0.0	0.757	y = 0.761x + 5.60		
grid prediction, 10x10 km separate (r or ub) map	3.1	-0.2	0.869	y = 0.814x + 4.15		
grid prediction, 1x1 km final combined map	3.4	-0.6	0.842	y = 0.808x + 3.96		
grid prediction, aggr. 10x10 km final comb. map	5.7	-3.2	0.704	y = 0.597x + 6.32		

Influence of grid resolution – PoE map

The map shows the probability that the spatial average of the relevant grid (e.g. 10x10 km or 1x1 km) exceeds the limit value.

10x10 km resolution map gives a realistic result for rural background areas only. (Not for urban areas.)

1x1 km resolution map gives a realistic result for both rural and urban background areas. (Not for hotspots.)

Influence of grid resolution – exposure table

PM₁₀, annual average, 2006 – population weighted concentration

	PM10-	annual	average	PM10	– 36 th h	nighest
Country	C.	D.	F.	C.	D.	F.
	10 - 1 - 1	1 - 1 - 1	aggr.D-10	10 - 1 - 1	1-1-1	aggr.D-10
Albania	31.8	31.8	27.5	54.0	53.5	46.1
Andorra	22.5	21.6	10.6	35.7	34.9	18.7
Austria	26.0	26.1	22.9	47.1	47.3	41.7
Belgium	31.3	31.2	30.1	51.3	51.2	50.0
Bosnia-Herzeg.	33.1	33.1	29.2	57.4	57.6	50.5
Bulgaria	41.6	41.8	31.9	74.2	74.5	55.2
Croatia	31.5	31.6	29.2	53.7	53.8	49.2
Cyprus	35.4	35.9	33.1	58. 2	57.8	50.4
Czech Republic	33.5	33.5	30.6	57.5	57.7	53.2
Denmark	23.5	23.6	21.5	37.0	37.5	34.2
Estonia	19.7	19.7	17.4	34.1	34.4	30.6
Finland	17.0	16.6	16.0	29.5	29.5	28.4
France	20.4	20.3	19.6	32.9	32.7	31.7
Germany	24.2	24.3	22.6	41.3	41.5	38.8
Greece	33.6	33.6	29.8	54.3	54.0	47.8
Slovenia	29.0	29.2	25.9	49.2	49.4	43.4
Spain	31.4	31.6	24.2	49.3	49.6	39.3
Sweden	19.0	18.8	16.7	32.0	32.2	28.2
Switzerland	23.2	23.2	20.6	43.9	43.8	39.3
United Kingdom	23.2	23.3	20.8	35.5	35.7	32.1
Total	28.5	28.6	25.5	47.8	47.9	42.9

1. Mapping methodology

Estimation of area in exceedance Estimation of population living in exceedance areas

2. Influence of grid resolution

3. Case study: NO₂ improved mapping incl. traffic

4. Conclusion and recommendation

Case study: Improved NO₂ mapping

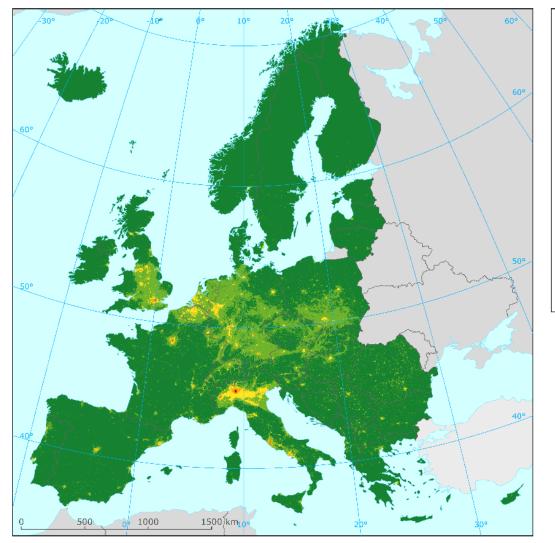
Detailed analysis presented in *ETC/ACM Technical Paper* 2016/12 "Inclusion of LC and traffic data in NO₂ mapping"

Inclusion of land cover and road data in NO₂ background mapping.

Creation of traffic layer map, based on traffic stations. Subsequently, inclusion of this traffic map layer in NO₂ map and exposure estimate. Inclusion of land cover and traffic data in NO₂ mapping methodology

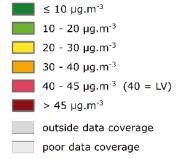
ETC/ACM Technical Paper 2016/12 March 2017

Jan Horálek, Peter de Smet, Philipp Schneider, Pavel Kurfürst, Frank de Leeuw



The European Tools Sentre on Air Foliation and Climite Change Mitlaston ETG/AGM is a concentum of European Institutes unler contract of the European Environment Agency INVA Agence CMI COS CIMERAINETIS VIII. OCO-Institute DEL UAB ENGAV VIIIC4 Stera NO₂ annual average, 2013 – rural and urban background map layers improvement by land cover data inclusion Inclusion of LC in LRM: 8 general CLC classes, with different radius. Together with other data – input to stepwise regression. For best variants: *spatial interpolation* of residuals, *1x1 km resolution.* Different variants compared by cross-validation.

enatial internelation variant + supplementary data used	rural areas						
spatial interpolation variant + supplementary data used	RMSE	RRMSE	bias	R ²	regr. eq.		
(i) current (EMEP, wind speed; 10x10 km)	3.4	35.8%	0.1	0.699	y = 0.677x + 3.2		
(ii) current 1km (EMEP, wind speed; 1x1 km)	3.4	35.2%	0.1	0.681	y = 0.694x + 2.0		
(iii) impr. current 1km (EMEP, altitude, wind speed; 1x1 km)	3.2	33.8%	0.1	0.706	y = 0.725x + 2.7		
(i∨) including LC (EMEP, altitude, w. sp., land cover; 1x1 km)	2.8	29.2%	0.1	0.782	y = 0.810x + 1.9		
(v) without CTM (alt., w.sp., s.s. rad., temp., pop., LC; 1x1 km)	3.3	34.6%	0.2	0.698	y = 0.760x + 2.5		
control interpolation variant + cupplementary data used	urban background areas						
spatial interpolation variant + supplementary data used			In the second	-2			
	RIVISE	RRMSE	plas	R ²	regr. eq.		
(i) current (EMEP, wind speed; 10x10 km)	5.1	23.9%			regr. eq. y = 0.572x + 9.2		
(i)current (EMEP, wind speed; 10x10 km)(ii)current 1km (EMEP, wind speed; 1x1 km)			0.0	0.557			
	5.1	23.9%	0.0	0.557 0.568	y = 0.572x + 9.2		
(ii) current 1km (EMEP, wind speed; 1x1 km)	5.1 5.1	23.9% 23.6% 22.7%	0.0 0.0 0.0	0.557 0.568 0.603	y = 0.572x + 9.2 y = 0.586x + 8.9		


Inclusion of land cover brings clear map improvement.

NO₂ annual avg., 2013 – rural and urban background map

Nitrogen Dioxide (NO₂) Annual Average

Reference Year: 2013 Combined Rural and Urban Background Map Method: Including Land Cover and Road Data Resolution: 1x1 km

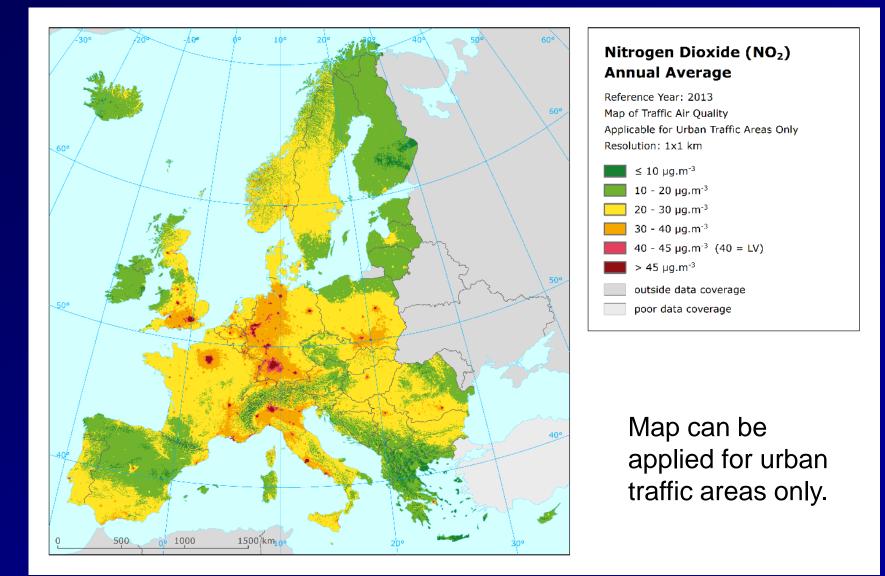
NO₂ annual average, 2013 – traffic map layer creation

Based on 855 urban traffic stations. (Rural traffic stations not considered, due to their small number, i.e. 19). Supplementary data – 37 variables (EMEP model, altitude, meteo, LC, ...): input to *linear regression model* analysis (stepwise regression + backwards elimination). 4 variants selected for further analysis.

linear regr. model +	(ii) current 1k	(iii) altern. curr.	(iv) incl. LC	(v) without CTM
OK of its residuals	urban traffic	urban traffic	urban traffic	urban traffic
OR OT Its residuals	coeff.	coeff.	coeff.	coeff.
c (constant)	42.58	36.16	27.39	-109.71
a1 (EMEP model)	0.654	0.685	0.550	
a2 (GTOPO_1km)		-0.0172	-0.0254	-0.0204
a3 (GTOPO_5km_rad)		0.0168	0.0213	0.0176
a4 (wind speed)	-1.278		-1.529	1.628
a5 (s. solar radiation)	-1.100	-1.019		-3.414
a6 (temperature)				-1.550
a7 (relative humidity)				1.206
a8 (population 5km rad)				0.000017
a8 (T2buf75m_1km)			7.263	
a10 (LDR_5km_rad)			0.0208	0.0248
adjusted R ²	0.33	0.33	0.36	0.31
st. err. [µg.m ⁻³]	10.80	10.80	10.53	10.93

NO₂ annual average, 2013 – traffic map layer creation

Spatial interpolation, 1x1 km resolution


Different LRM variants, comparison based on cross-validation.

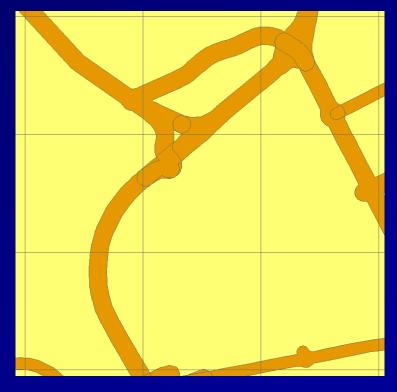
spatial interpolation variant + supplementary data used		urban traffic areas					
spatial interpolation variant + supprementary data used	RMSE	RRMSE	bias	R ²	regr. eq.		
(ii) current 1km (EMEP, wind speed, s. solar radiation; 1x1	m) 9.5	25.1%	0.0	0.470	y = 0.485x + 19.6		
(iii) alternative current (EMEP, alt., s. solar rad.; 1x1 km)	9.5	25.1%	0.1	0.470	y = 0.483x + 19.7		
(iv) including LC (EMEP, alt., w. sp., road data, LC; 1x1 km)	9.2	24.3%	0.1	0.505	y = 0.529x + 17.9		
(v) without CTM (alt., w.sp., s.s.r., r.h., temp., pop., LC; 1x1 k	n) 9.2	24.3%	0.1	0.504	y = 0.534x + 17.7		

Different variants give quite similar results.

Based on RRMSE (24%) and R² of cross-validation scatterplot (0.51): estimates of urban traffic air quality is reasonable.

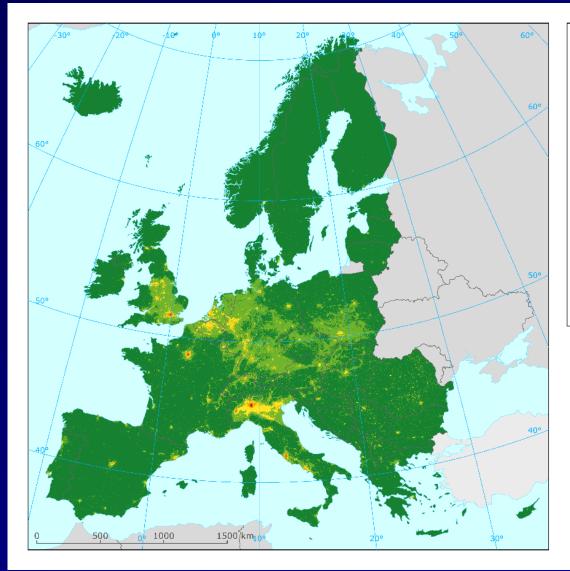
NO₂ annual average, 2013 – urban traffic map layer

Case study: Improved NO₂ mapping - continuation Inclusion of traffic map layer in background map

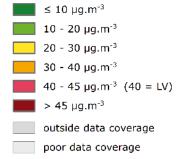

Inclusion in urban map layer:

$$\hat{Z}_{U}(s_{0}) = (1 - w_{T}(s_{0})) \cdot \hat{Z}_{UB}(s_{0}) + w_{T}(s_{0}) \cdot \hat{Z}_{T}(s_{0})$$

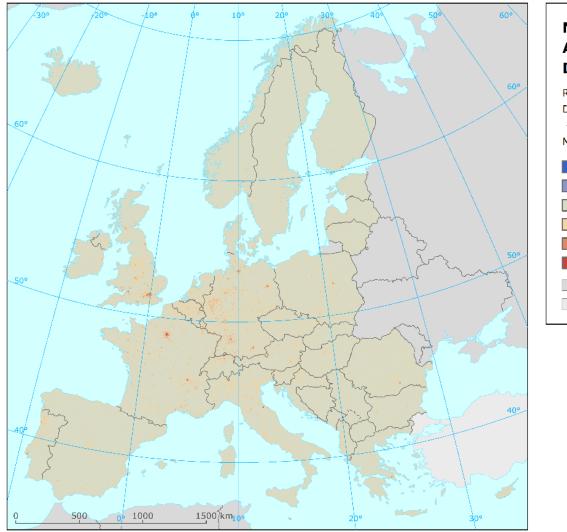
Weight: based on buffer around the streets/roads (GRIP database, source: PBL).


Buffer: tentative. 75 meters around roads of class 1 and 2, 50 meters around roads of class 3. (Should be refined.)

$$w_T(i) = T123buf_1km(i) / 2$$

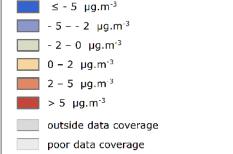

GRIP type class number	Class description
1	Highways
2	Primary roads
3	Secondary roads
4	Tertiary roads
5	Local, residential, urban roads

NO₂ annual average, 2013 – final merged map, 1x1 km

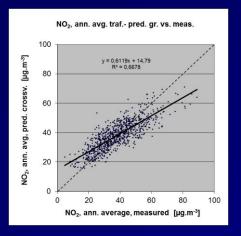


Nitrogen Dioxide (NO₂) Annual Average

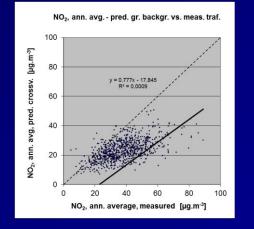
Reference Year: 2013 Combined Rural and Urban (incl. Traffic) Map Method: Including Land Cover and Traffic Layer Resolution: 1x1 km



NO₂ annual average, 2013 – difference "final – background"



Nitrogen Dioxide (NO₂) Annual Average Difference Map Reference Year: 2013


Difference: Method Including LC and Traffic Layer - Method Including Land Cover Map Resolution: 1x1 km

Case study: Improved NO₂ mapping – continuation *NO₂, annual average, 2013 – urban traffic areas simple comparison – map layers vs. traffic stations*

traffic map layer

Bad representation of traffic areas in urban background layer.

background map layer

	urban traffic stations							
NO ₂	RMSE	bias	R ²	lin. r. equation				
Annual average								
grid prediction, 1x1 km background map	7,6	-14,5	n	on significant				
grid prediction, 1x1 km urban traffic map layer	18,0	0,0	0,67	y = 0.612x + 14.8				

Case study: Improved NO₂ mapping – continuation Inclusion of traffic map layer in exposure estimate

$$\hat{c} = \frac{\sum_{i=1}^{N} c_{Bi} (1 - w_{U}(i) w_{T}(i)) p_{i} + \sum_{i=1}^{N} c_{Ti} w_{U}(i) w_{T}(i) p_{i}}{\sum_{i=1}^{N} p_{i}}$$

Weight: based on a buffer around the roads (GRIP database, source: PBL), similar as for map creation.

However: We go inside 1x1 km grid in the population exposure estimate.

Case study: Improved NO₂ mapping – continuation

NO₂ annual average 2013 – exposure estimate, comparison of estimate based on background (top) and final merged map (i.e. including traffic layer)

		N	Population					
Country			<	LV		>	LV	weighted
,		< 10	10 - 20	20 - 30	30 - 40	40 - 45	> 45	conc.
		μg.m ⁻³	[µg.m ⁻³]					
Total - based on backgrou	ind	13,9	46,9	30,4	7,2	1,1	0,4	10.0
map			98	,5	1,	18,6		
Total - based on final merg	ged	13,7	44,8	29,8	8,5	1,6	1,6	19,4
map, including traffic layer		96,8				3,	15,4	

Difference of population in exceedance: cc. 1.7% of European population.

1. Mapping methodology

Estimation of area in exceedance Estimation of population living in exceedance areas

2. Influence of grid resolution

3. Case study: NO₂ improved mapping incl. traffic

4. Conclusion and recommendation

Grid resolution is of a great importance.

Rural map: 10x10 km resolution satisfactory.

Urban background map: 1x1 km resolution satisfactory.

Map taking in account traffic AQ: going inside 1x1 km resolution is needed.

Thank you for your attention.