

On the validity of the incremental approach to calculate the impact of cities on air quality

Philippe Thunis

Athens

June 2017

Motivations

Determine at which level/scale air quality measures should be taken to abate air pollution in the most efficient manner.

Centre

- How can we quantify the contribution of city emissions on its own air pollution?
- Two main approaches:
 Incremental
 - ✓ CTM scenarios

Urban impact & real increment

European Commission

Urban impact & real increment

European Commission

Urban impact & for increment

Commission

cf

1. CTM-scenario

$$B_{cf}^{city} \cong B_{cf}^{city}$$
 (CTM)

2. Lenschow

$$B_{cf}^{city} \cong C^{rur}(d)$$

Urban impact & real increment

European Commission

Urban impact & state increment

Commission

Assumption I: the city spread is negligible $I_{cf}^{rur}(d) \cong 0$

The rural background location is far enough from the city not to feel its influence

Assumption II: the background is homogeneous $B_{cf}^{rur}(d) \cong B_{cf}^{city}$

The city and rural background locations should not be too far from each other

SHERPA assessment in 4 cities

~entre

How do these components vary

- with distance (d)
- With city fraction (cf)
- With city: Berlin, Paris, London, Bruxelles
- \succ With pollutant: PM_{2.5} and NO₂

SHERPA assessment in 4 cities

European Commission

City fractions

$PM_{2.5}$ for cf = FUA

PM_{2.5} for cf = urban erre

PM2.5 for cf = inner eity

European Commission

> Joint Research

 $B_{cf}^{city} > B_{cf}^{rur}(d)$

PM2.5 for cf = inner eity

European Commission

Joint Research Centre

Summary overviews

Comparison of obs. and mod. Increments (PM_{2.5})

Conclusions

□ The urban increment (*LUI*) is an appropriate estimate of the urban impact (*I*) only when two assumptions are fulfilled:

The city spread is negligibleThe background deviation is negligible

For PM_{2.5}, these two assumptions are never fulfilled for large or medium cities and the LUI underestimates the urban impact by 30 to 50%. Although it works better for NO₂ some underestimation is also found for this pollutant.

Conclusions (cont.)

- Given that:
 - The urban impact is very sensitive to the size of the city fraction
 The urban increment is very sensitive to distance (d) and location
 - the urban increment seems to be a poor proxy for estimating the urban impact.
- Studies based on the incremental approach are very likely to underestimate (heavily for PM_{2.5}) the impact of cities to their air pollution

