Use of SHERPA tool in Spain

Index

1. Purpose of using SHERPA
2. Description of the exercise
3. Difficulties found and some suggestions
4. Next work

Purpose of using SHERPA

- Assess air quality $\left(\mathrm{NO}_{2}\right)$ in Spain for different emission reductions
- Assess scenarios with emission reductions that comply with the National Emissions Ceiling (NEC) Directive
- Supported by Environmental Ministry of Spain.

Description of the exercise

- We calculated the NOx reductions required to comply with the NEC Directive.
- SHERPA with reductions applied to all sectors (SNAPS)
- SHERPA with reductions for specific SNAPs (starting task)
- First problems:
- Different sector shares for SHERPA and National Emission Inventory
- Base year for SHERPA is 2010 while for NEC directive is 2005

Comparing SHERPA emissions (2010) vs National Emission Inventory (NEI) of Spain (2010) for NOx

Sector Shares.

- There are discrepancies between SHERPA 2010 and NEI Spain 2010
- Main sectors contributing are traffic, other transports, power generation, industry and commercial-residential.

- Some differences due to recent changes in emission-calculating methodology.
- New methodology for NEI Spain.
- Currently studying SNAP 7 in depth (to see if there are differences that cannot be explained by the change in methodology)

Total emission evolution

Total emission evolution

- No reductions (with 2015 data) required for NOx in Spain to comply with ceilings for period 2020-2029
- NOx reductions required to comply NEC directive for 2030:
$\checkmark 44 \%$ respect to 2010 emissions
$\checkmark 34 \%$ respect to 2015 emissions

NOx emission map for 2010

NO_{2} concentration (annual mean) in 2010 SHERPA

- Exceedances of limit value $\left(40 \mu \mathrm{~g} / \mathrm{m}^{3}\right)$ in large cities.

NO_{2} concentration (annual mean) in 2010 CHIMERE+Observations

Air quality assessment map done by CIEMAT for Spanish Environment Ministry

SHERPA: NOx source apportioment

- All data

Absolute potential overview diagram

Source-apportionment diagram

SHERPA: NOx source apportioment

- Percentile 99

Absolute potential overview diagram

Source-apportionment diagram

Delta of NOx emissions for 44\% reduction for

 all sectors

Impact on $\mathbf{N O}_{\mathbf{2}}$ concentrations

- Reduction of anual mean of NO_{2} concentration expected for 2030 when reducing NOx by 44% for all sectors (respect to 2010)
- Important reduction of areas exceeding the annual limit value for NO_{2}.

Impact on NO_{2} concentrations

- Reduction of anual mean of NO_{2} concentration expected for 2030 when reducing NOx by 44\% for all sectors (respect to 2010)
- Maximum delta of annual concentrations $14 \mu \mathrm{~g} / \mathrm{m}^{3}$

Impact on $\mathbf{N O}_{2}$ concentrations

- Reduction of anual mean of NO_{2} concentration expected for 2030 when reducing NOx by 44\% for all sectors (respect to 2010)
- Maximum concentrations change 50\%

Some results of reductions by sectors

- Applied reduction to single sectors keeping the others without change.
- SNAP 7 (traffic) has the largest impact. Reducing NOx emission by 44% implies to reduce maxima of annual mean of NO_{2} concentration by $11.21 \mu \mathrm{~g} / \mathrm{m}^{3}$, which is 80% of the reduction when all SNAPs are reduced by 44%.

Some results of reductions by sectors

- If a SNAP 7 (traffic) emission of NOx is reduced by 55%, the maxima of annual average of NO_{2} concentration by $14 \mu \mathrm{~g} / \mathrm{m}^{3}$, which is the same result when reducing total emissions by 44%.
- Expected result because we are reducing where the maxima concentration are.

Difficulties found and some suggestions

- SHERPA emissions: 2010 while NEC Directive is based on 2005 emissions. It would be easier to study scenarios referred to NEC Directive if SHERPA had the option to use 2005 as a base year.
- It took us a while to find out what the macro sectors used in SHERPA (MS1, MS2..) represented. It turns out they are SNAPS but this is not explained anywhere
- It would help if SHERPA could provide total national emissions in order to check e.g. that the simulation complies with the Directive
- No option of changing the names of the saved output files and some errors in the NetCDF output (e.g. coordinate units in "\%")
- Reduction are given with positive values, so we can't know at first is there is reduction or gain

Next work

- Study scenarios for specific SNAPs
- Study other pollutants of NEC directive, (when available)
- Coupling with RIAT+ to evaluate emission reduction strategies
- Run CHIMERE for a chosen scenario to evaluate SHERPA results
- Run CHIMERE for Spain, $\sim 5 \mathrm{~km}^{2}$ resolution, for another year (2015) to have a new base (in collaboration with JRC)

Thank you

