

Composite Emission Mapping Exercise

FAIRMODE Technical Meeting 19-21 June 2017, Athens, Greece

Marc Guevara¹, Leonor Tarrason², Susana López-Aparicio²

¹BSC-Barcelona Supercomputing Center, Earth Sciences Department, Barcelona, Spain ²NILU -Norwegian Institute for Air Research, Urban Environment and Industry, Kjeller, Norway

WG2 Roadmap: Inter-comparison and benchmarking

- **Central priority of WG2 activities in 2017-2019:**
- To provide local emission information knowledge to urban, regional, national and European assessments
 - **Comparison** of local inventories with national and European inventories
 - Improvement of TOD national emission inventories and BUP local inventories – reducing the gap between them
 - Better understanding of **sources contributing** to urban pollution
 - Support to WG1 assessment work; and WG3 and WG4 source allocation and measure identification work
 - Move from benchmarking/guidance to permanent improvements

METHOD: Evaluation of Local inventories vs European wide inventories in the Δ -emission benchmarking tool

Barcelona Supercomputing A set of diagrams that support:

Fairmode Tools and Software

- Comparison of bottom-up (BU) and top-down (TD) emission inventories: bar plot, diamond plot, emission ratios and per capita plot
- Flag out anomalous behaviors in the emission inventories
- Get insight in possible explanation for the inconsistencies
- Reasons for discrepancies between emission totals over a given geographical area (city, region, country)

Benchmarking activities between 2015-2017: Involving local emission experts (Stockholm, Madrid, UK, Barcelona, 7 Norwegian cities, Emilia Romagna region, Porto, Lisbon, ...)

∆ DELTA Benchmarking

Air Qual Atmos Health (2016) 9:325-333 DOI 10.1007/s11869-016-0402-7

A novel approach to screen and compare emission inventories

P. Thunis¹ · B. Degraeuwe¹ · K. Cuvelier² · M. Guevara³ · L. Tarrason⁴ · A. Clappier⁵

- Description of the diamond plot
- Identifying whether differences between inventories can be mostly related to differences: (1) in the use of emission factors or (2) in the choice of activity data.

WG2: Δ Emission tool

Air Qual Atmos Health DOI 10.1007/s11869-016-0456-6

A benchmarking tool to screen and compare bottom-up and top-down atmospheric emission inventories

M. Guevara¹ · S. Lopez-Aparicio² · C. Cuvelier³ · L. Tarrason² · A. Clappier⁴ · P. Thunis⁵

- Description of the benchmarking Methodology - Δ-Emis tool
- Sequence of steps to perform a correct analysis of the results (Barcelona case study; bottom-up and TNO_MACC-II)

WG2: Δ Emission tool

TMOSPH

Atmospheric Environment

Volume 154, April 2017, Pages 285–296

Assessment of discrepancies between bottom-up and regional emission inventories in Norwegian urban areas

Susana López-Aparicio^{a,} 📥 , 🎴, Marc Guevara^b, Philippe Thunis^c, Kees Cuvelier^d, Leonor Tarrasón^a 표 **Show more**

https://doi.org/10.1016/j.atmosenv.2017.02.004

Get rights and content

- Bencharmking of multiple emission inventories for different Norwergian cities (bottom-up, EC4MACS, TNO_MACC-II and TNO_MACC-III)
- Important discrepancies in PM2.5 residential wood burning and NOx from road transport

BSC Barcelona Supercomputing Center Centro Nacional de Supero

Spatial inter-comparison of Top Down emission inventories in European urban areas (*Under revision*)

Trombetti, M., Thunis, P., Bessagnet, B., Clappier, A., Couvidat, F., Guevara, M., Kuenen, J., Lopez-Aparicio, S.

 How a set of six EU wide emission inventories behave in selected European urban areas in terms of sectorial shares and regional allocation

Submitted to:

- How do we move from benchmarking to permanent improvements?
- Which use for the new EMEP 0.1x0.1 reported country gridded emissions?
- How do we secure further involvement of local emission expertise in the work of FAIRMODE?

Composite mapping for emissions launched at the technical meeting in Zagreb

WG1 Experience → AQ composite mapping exercise

Barcelona Supercomputing Center Centro Nacional de Su

Do you think that a geospatial visualization of emissions may help to improve the estimation of emissions at local scale?

Would you be interested in participating in an activity aiming at collecting and assembling modelled emission maps?

Would you be able to contribute to this exercise providing your emission data?

Composite mapping for emissions

٠ NOX .

Barcelona Supercomputing

Centro Nacional de Supe

Center

BSC

FAIRMODE WG2 ADDED VALUE

Diamond diagrams as quality control and feedback to national EU wide TD inventories

• Air quality modellers

- Local emissions
- Emission modellers

http://fairmode.jrc.ec.europa.eu/ecmaps/

Urban emission data compilation

		+ = 3	× √ fr					
	٨	B	í ja	D	F	F	6	н
•	hane	1	City	shn	-		0	
	hane SM	/E-City-Sto	ckholm II	2010				
Ť	2012		# Reference year					
	Species	BU sector	BU sectors nomenclature	Correspondance with SNAP	kton/year			
N	/00	ENp	energy plants	\$1	0.01256			
	/oc	ENr	boilers heating	\$2	0.02958			
1	/oc	INDe	industrial boilers	53	0.20326			
N	/oc	IND	industries	S4	0.06235			
Ń	- /0C	PET	petrol stations depots	S5	0.17383			
0 1	/oc	SOLV	solvent use	56	4.362512			
	/oc	TRA	road transport	S7	0.1587			
2 \	/oc	TRAp	gasoline road transport	\$7.1	0.09734			
3 \	/oc	TRAd	diesel road transport	\$7.2	0.04751			
4 \	/oc	TRAg	LPG road transport	\$7.3	0.00329			
5 \	/00	TRAV	road transport non-exhaust volatilization	\$7.4	0.00894			
5 N	NOX	ENp	energy plants	\$1	0.40427			
7 1	NOX	ENr	boilers heating	S2	0.06846			
8 1	NOx	INDe	industrial boilers	\$3	0.05393			
9 1	NOx	IND	industries	S4	0			
	NOX	PET	petrol stations depots	\$5	0			
1 1	NOX	SOLV	solvent use	S6	0			
2 1	NOx	TRA	road transport	\$7	2.33981			
3 1	NOx	TRAp	gasoline road transport	\$7.1	0.32164			
4 P	NOx	TRAd	diesel road transport	\$7.2	1.91526			
5 1	NOx	TRAg	LPG road transport	\$7.3	0.04236			
5 F	PM10	ENp	energy_plants	S1	0.02377			
7 F	PM10	ENr	boilers heating	S2	0.02608			
8 F	PM10	INDe	industrial boilers	\$3	0.01466			
9 F	PM10	IND	industries	S4	0			
	PM10	PET	petrol_stations_depots	S5	0			
1 6	PM10	SOLV	solvent use	S6	0			
2 F	PM10	TRA	road transport	\$7	0.7091			
3 F	PM10	TRAp	gasoline_road_transport	\$7.1	0.00304			
4 F	PM10	TRAd	diesel road transport	\$7.2	0.04369			
5 F	PM10	TRAg	LPG road transport	\$7.3	0.00033			
6 F	PM10	TRAW	wear road transport	\$7.5	0.66119			
	ND							

Emissions file format for the Δ Emission tool

Barcelona

Supercomputing Center

Nacional de Su

- Total emissions per sector (.CSV template): species; BU sector; BU sector nomenclature; Correspondence with SNAP; Kton/year
- Shape file

Emissions file format for the Composite map

- ASCII or GeoTiff
- Gridded emission as annual total by pollutant and SNAP sector [ton / km² · year].

European Composite Maps Database

Consistency with the AQ composite mapping structure

Barcelona

Supercomputing Center

ntro Nacional de Su

BSC

Adding a new model

•

•

publication/report/presentation of the model

14-06-2017 14.15

Created

Update

- Pollutant : NO_x, SO₂, CO, NH₃, NMVOC PM₁₀, PM_{2.5}
- Output frequency: yearly
- Country: Spain
- Area (optional): City/region
- EPSG Code: <u>http://spatialreference.org/ref/epsg/</u>
- Year:
- Version:
- Documentation:
- Description (optional):

CO		· · ·
Output Fr	equency	
Yearly		·
Country		
Albania		•
Area (opti	onal)	
EPSG Cod	le	
EPSG Cod Map coord EPSG -	le linate reference id from the EPSG Dataset 0	\$
EPSG Cod Map coord EPSG - Year	le linate reference id from the EPSG Dataset 0	\$
EPSG Cod Map coord EPSG - Year 2017	te linate reference id from the EPSG Dataset 0	\$
EPSG Cod Map coord EPSG - Year 2017 Version	ie linate reference id from the EPSG Dataset 0	\$
EPSG Cod Map coord EPSG - Year 2017 Version	te linate reference id from the EPSG Dataset 0	\$

Adding a new file

The CMAPPING tool should be used to check the concentration maps before these are uploaded.

Avoid to upload unvalidated data to the database.

- Sector: S1, S2, S3, S4, S5, S6, S7, S8, S9, S10
- Estimation approach: bottom-up, topdown, downscaling, inverse modelling

Select a file
The <u>CMAPPING tool</u> should be used to check the concentration maps before these are uploaded to the Composite mapping database. Please, avoid to upload unvalidated data to the database to help us keeping the database consistent
Browse
Sector
You can tag files with sectors. The default value for single uploads is S1
S1
Estimation Approach
Bottom-Up r
Upload file Cancel and return to list

S3 and S4 emissions usually reported together \rightarrow S34 category to be created

Mapping between SNAP and GNFR14

GNFR14	SNAP					
A_PublicPower	SNAP1 (Public electricity and heat production)					
B_Industry	SNAP1 (Petroleum refining) SNAP3 SNAP4 SNAP5 (Quarrying and mining of minerals other than coal → PM)					
C_OtherStationaryComb	SNAP2					
D_Fugitive	SNAP4 (Fugitive emissions oil: Refining / storage, Fugitive emission from solid fuels: Solid fuel transformation → NMVOC) SNAP5 SNAP9 (Venting and flaring (oil, gas, combined oil and gas)					
E_Solvents	SNAP6					
F_RoadTransport	SNAP7					
G_Shipping H_Aviation I_Offroad O_AviCruise P_IntShipping	SNAP8					
J_Waste	SNAP9 (except D_Fugitive category)					
K_AgriLivestock L_AgriOther	SNAP10					

Mapping between SNAP and GNFR14

GNFR14	SNAP
A_PublicPower	SNAP1
+	SNAP3
B_Industry	SNAP4
C_OtherStationaryComb	SNAP2
D_Fugitive	SNAD5
+	SNAFJ SNADO
J_Waste	SNAF5
E_Solvents	SNAP6
F_RoadTransport	SNAP7
G_Shipping	
H_Aviation	
I_Offroad	SNAP8
O_AviCruise	
P_IntShipping	
K_AgriLivestock L_AgriOther	SNAP10

Or move to the GNFR14 nomenclature...

+ New Model

	Model Category	Pollutant	Run Year	Country	Are	a	Updated					
Files 2	Emission	PM2.5	2013	Spain	Mad	drid	15/06/2017		Q Details		Edit	× Delete
Files 2	Emission	PM10	2013	Spain	Mad	drid	15/06/2017		Q Details		Edit	× Delete
					Fi	les						
H Back to models	■ Back to run	file										
	File Name			S	Sector	Estimation	Approach	File Size	Content Type	Updated		
① Download	CEMAP_HERMESv2_ESP_PM	25_S7_EPSG3266	2_annual_2013_ma	d1km.asc S	57	Bottom-Up		91 KB	text/plain	15/06/201	7 📝 Edit	× Delete

S2

Top-Down

70 KB

text/plain

15/06/2017

🖍 Edit

X Delete

CEMAP HERMESv2 ESP PM25 S2 EPSG32662 annual 2013 mad1km.asc

Populating the EC Maps viewer

Barcelona Supercomputing Center Centro Nacional de Superc

Institution	Country (Region)	Resolution	Year	Sector	Pollutants
BSC	Spain (Catalonia, Madrid)	1x1km	2013	S2, S7	NOx, PM10, PM2.5, NMVOC
SLB-analys	Stockholm (Sweden)	1x1km	2015	S7	NOx, PM10
VITO	Flanders region (Belgium)	1x1km	2015	S1, S2, S3, S4, S5, S7, S8, S10	NOx, CO, SO2, NH3, PM10, PM2.5, NMVOC
JRC	Europe	1x1km	2010	S1, S2, S34, S7, S8, S9, S10	NOx, CO, SO2, NH3, PM10, PM2.5, NMVOC
EMEP	Europe Spain, Belgium, Portugal (official)	0.1x0.1	2014 2015	S2, S7, S34	NOx, PM10, PM2.5, NMVOC
NILU	Oslo (Norway)	1x1km	2013	S34, S2, S7, S8	NOx, PM10, PM2.5
UA	Lisboa (Portugal)			S2, S7, S3, S4	
CITTA	Coimbra (Portugal)		2015	S7, S7.1, S7.2	NOx, NMVOC, PM2.5

Populating the EC Maps viewer

Barcelona

Center

BSC

Supercomputing

Centro Nacional de Super

NILU

First results

https://eucompositemaps.marvin.vito.be/emissions/