The importance of evaluation of local traffic emission factors

FAIRMODE Technical Meeting
19-21 June 2017, Athens, Greece

Marc Guevara

Barcelona Supercomputing Center - Centro Nacional de Supercomputación, Earth Sciences Department, Barcelona, Spain.
Local meteorology strongly influenced by the surrounding terrain that favours stagnant conditions and air pollution episodes

Emissions

Second largest metropolitan area in the world:
More than 86,000 million vehicle-kilometre travelled per year (90% gasoline)

Planning policies

Mexico City limits private car use to battle pollution

Despite criticism, authorities take drastic measures to tackle the city’s first environmental emergency in 14 years.

Need for a management tool to develop and evaluate emission mitigation measures

Exceedance of O₃ limit values

Air Quality

Meteorology
Air Quality Forecast System for Mexico City: A computational tool for air quality management

- Complement the public information service provided by the monitoring network.
- Know in advance the possibility that air pollution episodes occur.
- Contribute to the development and evaluation of air quality plans (ProAire).

Pronóstico de calidad del aire y meteorológico para la CDMX

WRF/HERMES-Mex/CMAQ (1km²)

http://www.aire.cdmx.gob.mx/pronostico-aire/
HERMES-Mex: An emission processing system for the Mexico City metropolitan area

- Two official inventories are used: (1) the MCMA 2014, developed by the SEDEMA (bottom-up), and (2) the INEM 2013, developed by the SEMARNAT (top-down).

- The two inventories report annual emissions at the municipality level and cover point sources (23), area sources (45) and mobile sources (13).

- Biogenic emissions estimated using MEGANv2.1 (Guenther et al., 2012)
HERMES-Mex: An emission processing system for the Mexico City metropolitan area

• From annual municipal emissions to gridded hourly emissions

Emission Datasets

Spatial Allocation

Vertical Allocation

CMAQ ready emission data

Chemical Speciation

Temporal Allocation

✓ An emission processing tool to create high resolution emission data (1 hour, 1 km\(^2\)) for Mexico

✓ Flexible platform for emission scenario analysis

Guevara et al. (2017)
HERMES-Mex: An emission processing system for the Mexico City metropolitan area

- **Area sources**: Use of multiple local spatial proxies. Urban/industrial/agricultural land uses, urban/rural population, installations (bus terminals, gas stations, hospitals,...)

- **Mobile sources**: Road network map classified according to 8 types of roads. Traffic counts are used to assign specific weight factors to each type of road and vehicle
HERMES-Mex: An emission processing system for the Mexico City metropolitan area

- Estimating the effect of rain events on traffic resuspension emissions; Amato et al. (2012) methodology
Estimation of MCMA mobile sources emissions: MOBILE6.2-Mexico versus MOVES-Mexico

• Until 2016, mobile source official emissions were calculated using the Mobile Source Emission Factor Model for Mexico (MOBILE6.2-Mexico) (ERG, 2003).

• Despite assembling data from previous local works, the emission rates and degradation factors of MOBILE6.2-Mexico are based upon a relatively small dataset of emission testing results (< 1,000 vehicles) that are currently outdated.

• The National Institute of Ecology and Climate Change (INECC) required an update to the MOtor Vehicle Emission Simulator for Mexico (MOVES-Mexico) for official emission reporting.

• Mexico emission data collected between 2008 and 2014 using Remote Sensing Devices (RSD) was used to calibrate MOVES-Mexico (Koupal et al., 2016).

1. Comparing and evaluating the performance of MOBILE6.2-Mexico and MOVES-Mexico to simulate emissions and air quality concentrations in the MCMA

2. Analyzing the O_3 sensitivity to mobile-source emissions in the MCMA
When using MOBILE6.2-Mexico:

- Gasoline vehicles dominate NO\textsubscript{x} (~60%) and CO (~92%) emissions.
- The use of solvents and paints and the distribution, storage and leakage of fuels are the largest source of VOC emissions (~45%), with gasoline vehicles contributing 36%.
- Dust resuspension from unpaved and paved roads represents 55% of total PM\textsubscript{10}
- Diesel vehicles represent the ~17% of PM\textsubscript{2.5}
Estimation of MCMA mobile sources emissions: MOBILE6.2-Mexico versus MOVES-Mexico

When using MOVES-Mexico:

- NO\textsubscript{x}, CO and VOC mobile emissions are reduced by -42%, -53% and -63%.

- When comparing total emissions, the reductions are similar for NO\textsubscript{x} (-37%) since traffic is the dominant source.

- The changes for total VOC, PM\textsubscript{10} and PM\textsubscript{2.5} are lower (-26%, +8%, +6%) due to the large contributions of solvent and traffic resuspension to these pollutants.

<table>
<thead>
<tr>
<th></th>
<th>NO\textsubscript{x}</th>
<th>CO</th>
<th>VOC</th>
<th>PM\textsubscript{10}</th>
<th>PM\textsubscript{2.5}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobile Sources</td>
<td>-42%</td>
<td>-53%</td>
<td>-63%</td>
<td>70%</td>
<td>29%</td>
</tr>
<tr>
<td>Total Sources</td>
<td>-37%</td>
<td>-52%</td>
<td>-26%</td>
<td>8%</td>
<td>6%</td>
</tr>
</tbody>
</table>

Discrepancy between the INEM and MCMA inventories in terms of agricultural waste burning PM\textsubscript{2.5} emissions (factor of 10) → Bottom-up versus top-down
The impact of changing the emission factor model on air quality modelled concentrations

• February 14 - 28, 2014: Activation of the O_3 environmental pre-contingency alert.

• WRF-ARWv3.6/HERMES-Mex/CMAQv5.0.2 at 3x3km and 1x1km. Global meteorological and chemical ICON/BCON from GFS and MOZART-4.

• Comparison with measurements from the RAMA air quality monitoring network for CO, NO$_2$, O$_3$ and PM$_{2.5}$

• Focus on areas with a strong influence of traffic sources and suburban zones.

• Two air quality simulations:

 1. Run with the MOBILE6.2-Mexico traffic emissions.

 2. Concentrations modelled when using MOVES-Mexico.
The impact of changing the emission factor model on air quality modelled concentrations

- Reduction of the overestimation of CO and NO$_2$ peaks in urban traffic stations.

- Increase of the CO and NO$_2$ underestimation in suburban areas (biomass and trash burning).

- Despite reducing O$_3$ precursors, concentrations remain similar or even increased. Reduction of NO$_x$ (-37%) is larger than for toluene (-21%).
The impact of changing the emission factor model on air quality modelled concentrations

- 20th February: weak synoptic forcing associated with an anticyclone that lead to the formation of a convergence zone in the south of the MCMA and subsequent high O₃.

- O₃ peaks are increased in the core urban area when using MOVEs-Mexico while generally decreasing in mountain areas (up to ±30ppb). The urban core area is VOC-limited, while the surroundings are mostly NOx-limited.
Real-world vehicle fleet composition and emission characterization in Barcelona

- RSD campaign to characterise the vehicle fleet composition and the emission rates associated with each type of car.
Conclusions

• It is important to use appropriated and validated traffic emission factors when developing / applying air quality tools for air quality planning

 ❖ When replacing MOBILE6.2-Mexico by MOVES-Mexico, total emission estimations in the MCMA are reduced for NO\textsubscript{x} (-37%), CO (-52%) and VOCs (-26%), while slightly increased for PM\textsubscript{10} (+8%) and PM\textsubscript{2.5} (+6%).

 ❖ The air quality system’s performance clearly improves in urban stations with a strong influence of traffic sources when changing from MOBILE6.2-Mexico to MOVES-Mexico traffic emissions

• Response of pollutant concentrations to emission reductions is not linear

 ❖ Average peak O\textsubscript{3} concentrations are increased in the MCMA urban core region when just reducing traffic emissions.

 ❖ These results suggest that in order to reduce O\textsubscript{3} concentrations, emission control policies of mobile sources should be simultaneously combined with reductions of those activities related to the use of solvents and distribution of LPG.