On the validity of the incremental approach to calculate the impact of cities on air quality

Philippe Thunis

Athens

June 2017
Motivations

- Determine at which level/scale air quality measures should be taken to abate air pollution in the most efficient manner.

- How can we quantify the contribution of city emissions on its own air pollution?

- Two main approaches:
 - Incremental
 - CTM scenarios
Urban impact & urban increment

\[C^{\text{city}} \]

\[C^{\text{rur}}(d) \]
Urban impact & urban increment

- C^{city}
- $C^{rur}(d)$
- B^{city}_{cf}
- $B^{rur}(d)$

Diagram showing urban and rural concentration levels.
1. CTM-scenario

\[B_{cf}^{city} \cong B_{cf}^{city}(CTM) \]

2. Lenschow

\[B_{cf}^{city} \cong C_{rur}^{city}(d) \]
Urban impact & urban increment

\[C_{\text{city}} = B_{\text{cf}}^{\text{city}} + I_{\text{cf}}^{\text{city}} \]

\[C_{\text{rur}}(d) = B_{\text{cf}}^{\text{rur}}(d) + I_{\text{cf}}^{\text{rur}}(d) \]

\[I_{\text{cf}}^{\text{city}} = \left[C_{\text{city}} - C_{\text{rur}}(d) \right] \]

\[+ I_{\text{cf}}^{\text{rur}}(d) \]

\[+ \left[B_{\text{cf}}^{\text{rur}}(d) - B_{\text{cf}}^{\text{city}} \right] \]
Urban impact & urban increment

\[
I_{city}^{cf} = \left[C_{city}^{\text{city}} - C_{rur}^{rur}(d) \right] + I_{rur}^{rur}(d) + \left[B_{rur}^{rur}(d) - B_{city}^{city} \right]
\]

Assumption I: the city spread is negligible \(I_{cf}^{rur}(d) \approx 0\)

The rural background location is far enough from the city not to feel its influence

Assumption II: the background is homogeneous \(B_{cf}^{rur}(d) \approx B_{cf}^{city}\)

The city and rural background locations should not be too far from each other
How do these components vary

- with distance (d)
- With city fraction (cf)
- With pollutant: PM$_{2.5}$ and NO$_{2}$
SHERPA assessment in 4 cities

City fractions

- FUA
- Urban core
- Inner city

12 8 3

12 9 2

5 3.5

2.4 1.1
PM$_{2.5}$ for cf = FUA

- **London**
 - Background deviation
 - Lenschow increment
 - City spread

- **Paris**
 - Background deviation
 - Lenschow increment
 - City spread

- **Berlin**
 - Background deviation
 - Lenschow increment
 - City spread

- **Bruxelles**
 - Background deviation
 - Lenschow increment
 - City spread
PM$_{2.5}$ for $cf = \text{urban core}$

- **Berlin**
- **Paris**
- **London**
- **Bruxelles**

- Background deviation
- Lenschow increment
- City spread
PM2.5 for $c_f = \text{inner city}$

\[
B_{c_f}^{city} > B_{c_f}^{rur}(d)
\]
PM2.5 for cf = inner city

Paris

London

- **Background deviation**
- **Lenschow increment**
- **City spread**
Summary overviews

PM2.5

NO2

Percentage

Bruxelles Paris Berlin London

Inner City Impact Urban Core Impact FUA Impact Lenschow increment
Comparison of obs. and mod. Increments (PM$_{2.5}$)

- **Berlin**
 - East
 - West
 - South
 - North

- **Paris**
 - East
 - West
 - South
 - North

- **London**
 - East
 - West
 - South
 - North

- **Bruxelles**
 - East
 - West
 - South
 - North
Conclusions

- The urban increment (LUI) is an appropriate estimate of the urban impact (I) only when two assumptions are fulfilled:
 - The city spread is negligible
 - The background deviation is negligible

- For PM$_{2.5}$, these two assumptions are never fulfilled for large or medium cities and the LUI underestimates the urban impact by 30 to 50%. Although it works better for NO$_2$ some underestimation is also found for this pollutant.
Conclusions (cont.)

- Given that:
 - The urban impact is very sensitive to the size of the city fraction
 - The urban increment is very sensitive to distance (d) and location

 The urban increment seems to be a poor proxy for estimating the urban impact.

- Studies based on the incremental approach are very likely to underestimate (heavily for PM$_{2.5}$) the impact of cities to their air pollution