ETC/ACM air quality mapping method and its evaluation

Jan Horálek (ETC/ACM, CHMI)
Nina Benešová (ETC/ACM, CHMI)
Peter de Smet (ETC/ACM, RIVM)
1. Mapping methodology

2. Routine evaluation (especially cross-validation)

3. Evaluation using Delta tool (first attempt)
ETC/ACM mapping methodology

Developed (in 2005-2007) with the objective of the European Environmental Agency of having interpolated maps *primarily based on air quality measurements*.

The Directive 2008/50/EC on Ambient Air Quality and Cleaner Air for Europe requires that air quality should be assessed throughout the territory of each member state. It requires that the *fixed measurements* should be used as a *primarily source of information* for such assessment in the polluted areas. Those measurement data may be supplemented by *modelling techniques* to provide adequate information on the spatial distribution of the air quality.

Primarily data – measurement data

Supplementary data – chemical transport model output, other proxy data (altitude, meteorology, popul. density)
Linear regression model followed by kriging of its residuals (residual kriging)

The supplementary data for linear regression model were selected based on their relation with measured AQ data.

In the case of PM$_{10}$ and PM$_{2.5}$, both measured data and dispersion model output are logarithmically transformed, due to the lognormal distribution of these data.

kriging – spatial interpolation geostatistical method (i.e. knowledge of the spatial structure of air quality field is utilized, using variogram)
Mapping method – continuation

variogram - measure of a spatial correlation

parameters: *sill, nugget, range*

Empirical variogram fitted by an analytical function – in our case spherical.

The method is routinely used for *annual data* (i.e. the monitoring and modelling and other data combined for annual indicators.) For sensitivity analysis (and comparison with the results based on daily data), see ETC/ACM Technical Paper 2012/8.
Separate mapping of rural and urban air quality

– due to different character of urban and rural air quality

PM$_{10}$, PM$_{2.5}$, NO$_2$ – urban/suburban concentrations are in general higher than the rural concentrations

Ozone – rural concentrations are higher than urb/sub

Rural and urban background maps are created separately,

rural maps – based on rural background stations

urban background maps – based on urban and suburban background stations

Final maps are created by merging of rural and urban background maps, using population density.
Mapping methodology – continuation

Grid resolution of the health-related indicators

Separate rural and urban background maps
 – created in **10x10 km resolution**

These maps are merged using population density (in 1x1 km)
 – into **1x1 km resolution**

Exposure estimates – based on these 1x1 km maps.

Presentation – final maps are spatial aggregated into 10x10 km resolution. (Plus urban background maps.)
Pollutants and indicators mapped

Regularly:
- PM_{10} – annual average [$\mu g.m^{-3}$]
- 36^{th} maximum daily average value [$\mu g.m^{-3}$]
- $PM_{2.5}$ – annual average [$\mu g.m^{-3}$].
- **Ozone** – 26^{th} highest daily max. 8-hourly mean [$\mu g.m^{-3}$]
 - SOMO35 [$\mu g.m^{-3}.day$]
 - AOT40 for crops [$\mu g.m^{-3}.hour$]
 - AOT40 for forests [$\mu g.m^{-3}.hour$]

Repetitively:
- NO_2 – annual average [$\mu g.m^{-3}$]
- NO_x – annual average [$\mu g.m^{-3}$]
- SO_2 – annual average [$\mu g.m^{-3}$]

Newly:
- BaP – annual average [$\mu g.m^{-3}$]
PM$_{10}$ annual average, 2010 – rural areas

measured data

EMEP model

Linear regression model (log. transformed):

\[y = 0.262x + 7.02 \]

\[R^2 = 0.211 \]

EMEP model

EMEP model, altitude

EMEP m., altitude, wind speed

adj. R^2	SEE
0.33 | 0.324
0.41 | 0.306
0.44 | 0.295
PM_{10} annual average, 2010 – rural areas
rural map (applicable for rural areas only)

PM$_{10}$ Annual Average
Reference year: 2010
Map of Rural Quality
Resolution: 10x10 km

- < 10 µg m$^{-3}$
- 10 - 20 µg m$^{-3}$
- 20 - 40 µg m$^{-3}$
- 40 - 45 µg m$^{-3}$ > LV
- > 45 µg m$^{-3}$

- non-mapped countries
- area with poor data coverage
- rural background station

Cross-validation

RMSE = 4.5 µg m^{-3}
Bias = 0.2 µg m^{-3}

$y = 0.649x + 7.18$
$R^2 = 0.615$
PM$_{10}$ annual average, 2010 – urban areas

measured data

EMEP model

Linear regression model (log. transformed):

<table>
<thead>
<tr>
<th>EMEP model</th>
<th>adj. R^2</th>
<th>SEE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.38</td>
<td>0.292</td>
</tr>
</tbody>
</table>
PM_{10} annual average, 2010 – urban areas

Urban background map (applicable for urban areas only)

Cross-validation

$RMSE = 6.6 \ \mu g. \ m^{-3}$

$Bias = -0.1 \ \mu g. \ m^{-3}$
PM_{10} annual average, 2010

final merged map
Actual air quality maps

Regular annual product: *ETC/ACM Technical Paper „European air quality maps of PM and ozone and their uncertainty“*

Concentration maps, inter annual difference maps, exposure tables, uncertainty analysis.

Most recent: *ETC/ACM TP 2014/4*, maps for 2012

PM_{10} – annual average, 2012
PM$_{10}$ – 36th highest daily mean, 2012
PM$_{2.5}$ – annual average, 2012
O_3 – 26th highest daily max. 8-hourly mean, 2011
O₃ – SOMO35, 2011
1. Mapping methodology

2. Routine evaluation (especially cross-validation)

3. Evaluation using Delta tool (first attempts)
Routine evaluation

cross-validation – the spatial interpolation is calculated for every measurement point based on all available information except from the point in question. These estimated values are compared with the measured ones by scatter-plot (including R^2 and regression equation) and by statistical indicators, espec. RMSE and bias (MPE). Occasionally also MAE and other ones.

\[
RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (\hat{Z}(s_i) - Z(s_i))^2}
\]

\[
bias(MPE) = \frac{1}{N} \sum_{i=1}^{N} (\hat{Z}(s_i) - Z(s_i))
\]

\[
MAE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} |Z(s_i) - \hat{Z}(s_i)|}
\]

where $Z(s_i)$ is the measured value in point s_i

$\hat{Z}(s_i)$ is the estimation in the point s_i

using other points

N is the number of the stations
Routine evaluation – continuation

Next to this: RMSE in relative terms

$$RRMSE = \frac{RMSE}{Z} \cdot 100$$

Z is the mean of the air pollution indicator value for all stations.

Cross-validation evaluates of the quality of the predicted values at locations without measurements. It also enables to validate the quality of the uncertainty map, i.e. kriging standard error (or standard deviation) map, created based on the geostatistical theory.
Routine evaluation – continuation

Comparison of the point measured and interpolated grid values – *the linear regression equation* and its R^2, by RMSE and bias.

Simple comparison evaluates the quality of the map at locations of measurements. (Variability – due to interpolation smoothing, spatial averaging into 10x10 km cells, and eventually rural/urban merging).

Validation done separately for urban and rural areas
- for rural maps (using rural background stations)
- for urban background maps (using urban background stations)
- for final merged maps (using rural and urban background stations, separately)
Routine evaluation – continuation

Separate for rural and urban background maps

PM_{10}, annual average, 2012

cross-validation

<table>
<thead>
<tr>
<th>linear regr. model + OK of its residuals</th>
<th>rural areas parameter values</th>
<th>urban areas parameter values</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMSE [µg.m$^{-3}$]</td>
<td>3.8</td>
<td>6.1</td>
</tr>
<tr>
<td>Relative RMSE [%]</td>
<td>21.4</td>
<td>22.1</td>
</tr>
<tr>
<td>bias (MPE) [µg.m$^{-3}$]</td>
<td>0.1</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Level of underestimation in areas without measurement can be estimated.
Analysis of rural/urban areas in final map

PM$_{10}$, annual average, 2012

Simple comparison – rural areas

Good representation in both 1x1 km and 10x10 km maps.

<table>
<thead>
<tr>
<th>rural backgr. stations</th>
<th>RMSE</th>
<th>bias</th>
<th>R^2</th>
<th>equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>cross-valid. prediction, separate (r or ub) map</td>
<td>3.8</td>
<td>0.1</td>
<td>0.67</td>
<td>$y = 0.684x + 5.66$</td>
</tr>
<tr>
<td>grid prediction, 10x10 km separate (r or ub) map</td>
<td>2.5</td>
<td>-0.2</td>
<td>0.86</td>
<td>$y = 0.775x + 3.74$</td>
</tr>
<tr>
<td>grid prediction, 1x1 km final merged map</td>
<td>2.6</td>
<td>0.3</td>
<td>0.84</td>
<td>$y = 0.808x + 3.61$</td>
</tr>
<tr>
<td>grid prediction, aggr. 10x10 km final merged map</td>
<td>2.5</td>
<td>0.2</td>
<td>0.86</td>
<td>$y = 0.789x + 3.86$</td>
</tr>
</tbody>
</table>
Analysis of rural/urban areas in final map – cont.

PM$_{10}$, annual average, 2012

simple comparison – urban background areas

Good representation in 1x1 km map, but not in 10x10 km map (bias, RMSE, R^2).

<table>
<thead>
<tr>
<th>urb./suburban backgr. stations</th>
<th>RMSE</th>
<th>bias</th>
<th>R^2</th>
<th>equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>cross-valid. prediction, separate (r or ub) map</td>
<td>6.1</td>
<td>0.0</td>
<td>0.76</td>
<td>$y = 0.781x + 6.0$</td>
</tr>
<tr>
<td>grid prediction, 10x10 km separate (r or ub) map</td>
<td>4.3</td>
<td>-0.3</td>
<td>0.89</td>
<td>$y = 0.831x + 4.3$</td>
</tr>
<tr>
<td>grid prediction, 1x1 km final merged map</td>
<td>5.3</td>
<td>-0.7</td>
<td>0.82</td>
<td>$y = 0.791x + 5.0$</td>
</tr>
<tr>
<td>grid prediction, aggr. 10x10 km final merged map</td>
<td>8.7</td>
<td>-4.2</td>
<td>0.65</td>
<td>$y = 0.536x + 8.4$</td>
</tr>
</tbody>
</table>
Analysis of rural/urban areas in final map – cont.

Action: to present *separate urban background AQ map* to illustrate the difference with the aggregated final map.

<table>
<thead>
<tr>
<th>Particulate Matter (PM$_{10}$)</th>
<th>Annual Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban Background Map</td>
<td></td>
</tr>
<tr>
<td>Reference Year: 2012</td>
<td></td>
</tr>
<tr>
<td>Applicable for urban areas only</td>
<td></td>
</tr>
<tr>
<td>Interpolation Resolution: 10x10 km</td>
<td></td>
</tr>
<tr>
<td>Map Resolution: 1x1 km</td>
<td></td>
</tr>
</tbody>
</table>

urban mixed areas areas
- ≤ 10 µg.m$^{-3}$
- 10 - 20 µg.m$^{-3}$
- 20 - 30 µg.m$^{-3}$
- 30 - 40 µg.m$^{-3}$
- 40 - 50 µg.m$^{-3}$ (40 = LV)
- > 50 µg.m$^{-3}$

- outside data coverage
- non-urban areas
Routine evaluation – continuation

O_3, 26th highest daily maximum 8-hourly mean, 2012

cross-validation

<table>
<thead>
<tr>
<th>Linear regr. model + OK on its residuals</th>
<th>Rural areas</th>
<th>Urban areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMSE [μg.m$^{-3}$]</td>
<td>8.49</td>
<td>9.06</td>
</tr>
<tr>
<td>Relative RMSE [%]</td>
<td>7.4</td>
<td>8.3</td>
</tr>
<tr>
<td>Bias (MPE) [μg.m$^{-3}$]</td>
<td>0.18</td>
<td>-0.07</td>
</tr>
</tbody>
</table>

Level of underestimation in areas without measurement can be estimated.
Analysis of rural/urban areas in final map

O_3 26th highest daily maximum 8-hourly mean, 2012

Simple comparison – rural areas

Good representation in both 1x1 km and 10x10 km maps.

<table>
<thead>
<tr>
<th>rural 10x10</th>
<th>final merged 1x1</th>
<th>final, aggr. 10x10</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>rural backgr. stations</th>
<th>RMSE</th>
<th>bias</th>
<th>R^2</th>
<th>equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>cross-valid. prediction, separate (r or ub) map</td>
<td>8.5</td>
<td>0.2</td>
<td>0.71</td>
<td>$y = 0.750x + 28.8$</td>
</tr>
<tr>
<td>grid prediction, 10x10 km separate (r or ub) map</td>
<td>4.1</td>
<td>0.1</td>
<td>0.93</td>
<td>$y = 0.880x + 13.8$</td>
</tr>
<tr>
<td>grid prediction, 1x1 km final merged map</td>
<td>4.8</td>
<td>-0.4</td>
<td>0.910</td>
<td>$y = 0.860x + 15.6$</td>
</tr>
<tr>
<td>grid prediction, aggr. 10x10 km final merged map</td>
<td>4.7</td>
<td>-0.3</td>
<td>0.915</td>
<td>$y = 0.859x + 15.8$</td>
</tr>
</tbody>
</table>
Analysis of rural/urban areas in final map

O₃ 26th highest daily maximum 8-hourly mean, 2012

simple comparison – urban background areas

Good representation in 1x1 km map, but not in 10x10 km map (bias, RMSE, R²).

<table>
<thead>
<tr>
<th>urb./suburban backgr. stations</th>
<th>RMSE</th>
<th>bias</th>
<th>R²</th>
<th>equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>cross-valid. prediction, separate (r or ub) map</td>
<td>9.1</td>
<td>-0.1</td>
<td>0.70</td>
<td>y = 0.722x + 30.4</td>
</tr>
<tr>
<td>grid prediction, 10x10 km separate (r or ub) map</td>
<td>7.6</td>
<td>0.0</td>
<td>0.79</td>
<td>y = 0.768x + 25.4</td>
</tr>
<tr>
<td>grid prediction, 1x1 km final merged map</td>
<td>8.0</td>
<td>0.7</td>
<td>0.77</td>
<td>y = 0.770x + 25.8</td>
</tr>
<tr>
<td>grid prediction, aggr. 10x10 km final merged map</td>
<td>9.6</td>
<td>3.5</td>
<td>0.71</td>
<td>y = 0.760x + 29.8</td>
</tr>
</tbody>
</table>
Analysis of different CTMs use

Detailed analysis presented in *ETC/ACM Technical Paper 2013/9 „Evaluation of Copernicus MACC-II ensemble products in the ETC/ACM spatial air quality mapping“*

Comparison of the use of EMEP, MACC-II Ensemble and CHIMERE-EC4MACS (in two different resolution) in ETC/ACM mapping. Additionally, comparison of ETC/ACM mapping and the model results
Analysis of the use of other models - continuation

Outputs of different models. PM_{10}, annual average, 2009

Statistical indicators against measured data at rural stations.

Different results for different models.
Analysis of the use of other models - continuation

ETC/ACM mapping using different models, rural map, PM$_{10}$, ann. average, 2009

Statistical indicators using cross-validation at rural stations.

<table>
<thead>
<tr>
<th>Model used in ETC/ACM mapping</th>
<th>Rural</th>
<th>RMSE</th>
<th>Bias</th>
<th>R2</th>
<th>Regr. equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMEP, 50x50</td>
<td>4.70</td>
<td>24.3%</td>
<td>0.16</td>
<td>0.518</td>
<td>$y = 0.565x + 8.58$</td>
</tr>
<tr>
<td>MACC-ENS, 20x30</td>
<td>4.55</td>
<td>23.5%</td>
<td>0.16</td>
<td>0.554</td>
<td>$y = 0.620x + 7.51$</td>
</tr>
<tr>
<td>CHIMERE-EC4M, 50x50</td>
<td>4.43</td>
<td>22.9%</td>
<td>0.14</td>
<td>0.568</td>
<td>$y = 0.577x + 8.32$</td>
</tr>
<tr>
<td>CHIMERE-EC4M, 7x7</td>
<td>4.21</td>
<td>21.8%</td>
<td>0.15</td>
<td>0.613</td>
<td>$y = 0.645x + 7.01$</td>
</tr>
</tbody>
</table>

Similar bias for mapping using different models.
1. Mapping methodology

2. Routine evaluation (especially cross-validation)

3. Evaluation using Delta tool (first attempt)
Evaluation using Delta tool (first attempt)

Obstacles: Annual, not daily data.

Especially: Monitoring data used in the result.

Is Delta tool suitable for the mapping methods based on the combination of monitoring and modelling data?

Approach: To test

- mapping using full set of the stations, against the same set of the stations

- mapping using the assimilation-subset of the stations, against the validation-subset of the stations

The subsets – received by INERIS, as used in MACC.
Evaluation using Delta tool (first attempt) –contin.

Preliminary results

PM_{10} annual average, 2012

full set of the stations, all types of the stations
Evaluation using Delta tool (first attempt) – contin.

Preliminary results

PM$_{10}$ annual average, 2012

full set of the stations, rural background stations
Evaluation using Delta tool (first attempt) – contin.

Preliminary results

PM$_{10}$ annual average, 2012

full set of the stations, urban/suburban backgr. stations
Evaluation using Delta tool (first attempt) – contin.

Preliminary results

PM_{10} annual average, 2012

mapping using assimilation subset of the stations, against validation subset of the stations, all types
Evaluation using Delta tool (first attempt) – contin.

Preliminary results

PM$_{10}$ annual average, 2012

mapping using assimilation subset of the stations, against validation subset of the stations, rural background stations
Evaluation using Delta tool (first attempt) – contin.

Preliminary results

PM$_{10}$ annual average, 2012

mapping using assimilation subset of the stations, against the validation subset, urban/suburb. background stations
Evaluation using Delta tool (first attempt) – contin.

Preliminary results

Ozone, 26th highest daily max. 8-hourly daily mean, 2012

mapping using assimilation subset of the stations, against validation subset of the stations, all types
Evaluation using Delta tool (first attempt) – contin.

Preliminary results

Ozone, 26th highest daily max. 8-hourly daily mean, 2012

mapping using assimilation subset of the stations, against validation subset of the stations, rural background stations
Evaluation using Delta tool (first attempt) – contin.

Preliminary results

Ozone, 26th highest daily max. 8-hourly daily mean, 2012

Mapping using assimilation subset of the stations, against the validation subset, urban/suburb. background stations
Conclusions

ETC/ACM spatial interpolation mapping is based primarily on the measured data. Secondary data – chemical transport model data, altitude, meteorology, population density. Linear regression model plus kriging on its residuals.

Urban and rural areas are mapped separately, merged together using population density.

Routine evaluation – cross-validation, simple comparison of monitoring and mapped data. Separately for rural and urban/suburban background station.

Evaluation using Dela tool – first attempt, preliminary results. Is Delta tool suitable for the combined monitored-modelled map?
Thank you for your attention.